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LECTURE PLAN

� Motivation: Observations with missing values

� Sketch of the algorithm, relation to K-means

� EM algorithm derivation and properties
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EM Algorithm

� Used to find maximum likelihood parameters of a statistical model when the equations
cannot be directly solved.

� Two typical cases of use:

• Missing data: Some observations are incomplete. E.g. features are vectors in
5-dimensional space x = (x1, x2, x3, x4, x5) ∈ RD but observations have a
component missing, e.g.: (2, 5, •, 1, 2) or (•, •, 1, 4, 2), where ’•’ are the
unobserved components.

• Latent variables: Observations are complete but the model can be formulated
and solved more simply if further variables are introduced to it. A typical example
are mixture models where for each observed point it is advantageous to introduce
a random variable which specifies which component of the mixture generated that
point.
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EM for Maximum Likelihood Estimation, Example (1)

Consider multivariate normal distribution in 2D. For simplicity, let us consider the isotropic
case for which the covariance matrix Σ is diagonal and parametrized by a single parameter
σ2, Σ = diag(σ2, σ2). The normal distribution N

(
x|µ, σ2

)
for this case is then

N
(
x|µ, σ2

)
=

1

2πσ2
e
−1

2
‖x−µ2‖
σ2 , (1)

where x ∈ R2 is the random variable and µ ∈ R2 is the mean.

Having the data {x1,x2, ...,xN}, the MLE for the parameters µ and σ2 are computed as:

µ̂ =
1

N

N∑
i=1

xi (2)

σ̂2 =
1

2N

N∑
i=1

‖xi − µ̂‖2 (3)

(2N in the denominator of Eq. (3) is not a mistake. It follows from the parametrization of Σ
and the dimensionality of the considered space.)
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EM for Maximum Likelihood Estimation, Example (2)

Now consider the case that the data are the result of random sampling from a mixture of
two such distributions (denoted A and B):

p(x|πA, πB,µA,µB, σ2
A, σ

2
B) = πAN

(
x|µA, σ2

A

)
+ πBN

(
x|µB, σ2

B

)
, (4)

where πA and πB imply the frequency with which a sample is realized from the respective
distribution (πA + πB = 1) and other parameters have obvious meaning.

Analytical derivation of MLE in this case will involve logarithm of the sum of two exp terms.
This is not as easily solvable.

This is where the EM algorithm comes in.
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EM for Maximum Likelihood Estimation, Example (3)

1. Initialize π̂A, π̂B, µ̂A, µ̂B, σ̂2
A, σ̂

2
B

2. For each of the data xk, compute

vAk = π̂AN
(
xk|µ̂A, σ̂2

A

)
, vBk = π̂BN

(
xk|µ̂B, σ̂2

B

)
(5)

qAk =
vAk

vAk + vBk
, qBk =

vBk
vAk + vBk

(6)

3. Use qAk and qBk as weights. That is, if, say, (qAk , q
B
k ) = (0.2, 0.8), act as if 20% of point

xk were from distribution A and 80% of that point were from distribution B. Update
the estimates for the respective distributions as follows:

µ̂A =
1∑N
i=1 q

A
k

N∑
i=1

qAk xk (7)

σ̂2
A =

1

2
∑N
i=1 q

A
k

N∑
i=1

qAk ‖xk − µ̂A‖2 (8)

π̂A =
1

N

N∑
i=1

qAk (9)

4. (and analogously for B). Iterate.
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Example: Mixture of Gaussians (general non-isotropic case)
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Toy Example 1: Estimating Means of Two Normal
Distributions

We measure lengths of vehicles. The observation space has two dimensions, with
x ∈ {car, truck} capturing vehicle type and y ∈ R capturing length.

p(x, y) : distribution , x ∈ {car, truck} , y ∈ R (10)

p(car, y) = πcN (y|µc, σc = 1) = κc exp

{
−1

2
(y − µc)

2

}
, (κc =

πc√
2π

) (11)

p(truck, y) = πtN (y|µt, σt = 2) = κt exp

{
−1

8
(y − µt)

2

}
, (κt =

πc√
8π

) (12)

Suppose κc, κt, σc, σt are known. The only unknowns are µc and µt. We want to recover µc
and µt using Maximum Likelihood.

Example (πc = 0.6, πt = 0.4, σc = 1, σt = 2, µc = 5, µt = 10 )
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Toy Example 1, Complete Data → Easy

The observations are:

T = {(x1, y1), (x2, y2), , ..., (xN , yN)} (13)

= {(car, y(c)1 ), (car, y(c)2 ), ..., (car, y(c)C )︸ ︷︷ ︸
C car observations

, (truck, y(t)1 ), (truck, y(t)2 ), ..., (truck, y(t)T )︸ ︷︷ ︸
T truck observations

} (14)

Log-likelihood `(T ) = ln p(T |µc, µt):

`(T ) =

N∑
i=1

ln p(xi, yi|µc, µt) = C lnκc−
1

2

C∑
i=1

(y
(c)
i −µc)

2 +T lnκt−
1

8

T∑
i=1

(y
(t)
i −µt)

2 (15)

Estimation of µ1, µ2 using ML is easy:

∂`(T )

∂µc
=

C∑
i=1

(y
(c)
i − µc) = 0 ⇒ µc =

1

C

C∑
i=1

y
(c)
i (16)

∂`(T )

∂µt
=

1

4

T∑
i=1

(y
(t)
i − µt) = 0 ⇒ µt =

1

T

T∑
i=1

y
(t)
i (17)

http://cmp.felk.cvut.cz


9/32
Toy Example 1, Incomplete Data → Difficult (1)

Consider some observations to have the first coordinate missing (•):

T = {(car, y(c)1 ), ..., (car, y(c)C ), (truck, y(t)1 ), ..., (truck, y(t)T ), (•, y•1), ..., (•, y•M)︸ ︷︷ ︸
data with uknown
vehicle type

} (18)

Probability p(y•) of observing y•:

p(y•) = p(car, y•) + p(truck, y•)

Log-likelihood:

`(T ) =

N∑
i=1

ln p(xi, yi|µc, µt) =

same term as before︷ ︸︸ ︷
C lnκc −

1

2

C∑
i=1

(y
(c)
i − µc)

2 + T lnκt −
1

8

T∑
i=1

(y
(t)
i − µt)

2

(19)

+

M∑
i=1

ln

(
κc exp

{
−1

2
(y•i − µc)

2

}
+ κt exp

{
−1

8
(y•i − µt)

2

})
(20)
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Toy Example 1, Incomplete Data → Difficult (2)

Log-likelihood:

`(T ) = C lnκc −
1

2

C∑
i=1

(y
(c)
i − µc)

2 + T lnκt −
1

8

T∑
i=1

(y
(t)
i − µt)

2 (21)

+

M∑
i=1

ln

(
κc exp

{
−1

2
(y•i − µc)

2

}
+ κt exp

{
−1

8
(y•i − µt)

2

})
(22)

Optimality condition (shown for µc only):

0 =
∂`(T )

∂µc
=

C∑
i=1

(y
(c)
i − µc) + (23)

+

M∑
i=1

κc exp
{
−1

2 (y•i − µc)
2
}

κc exp
{
−1

2 (y•i − µc)
2
}

+ κt exp
{
−1

8 (y•i − µt)
2
}(y•i − µc) (24)
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Missing Values, Optimality Condition

Log-likelihood:

`(T ) = C lnκc −
1

2

C∑
i=1

(y
(c)
i − µc)

2 + T lnκt −
1

8

T∑
i=1

(y
(t)
i − µt)

2 (25)

+

M∑
i=1

ln

(
κc exp

{
−1

2
(y•i − µc)

2

}
+ κt exp

{
−1

8
(y•i − µt)

2

})
(26)

Optimality condition (shown for µc only):

0 =
∂`(T )

∂µc
=

C∑
i=1

(y
(c)
i − µc) + (27)

+

M∑
i=1

p(car, y•i |µc, µt)︷ ︸︸ ︷
κc exp

{
−1

2 (y•i − µc)
2
}

κc exp
{
−1

2 (y•i − µc)
2
}

︸ ︷︷ ︸
p(car, y•i |µc, µt)

+κt exp
{
−1

8 (y•i − µt)
2
}

︸ ︷︷ ︸
p(truck, y•i |µc, µt)

(y•i − µc) (28)
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Missing Values, Optimality Condition

Log-likelihood:

`(T ) = C lnκc −
1

2

C∑
i=1

(y
(c)
i − µc)

2 + T lnκt −
1

8

T∑
i=1

(y
(t)
i − µt)

2 (29)

+

M∑
i=1

ln

(
κc exp

{
−1

2
(y•i − µc)

2

}
+ κt exp

{
−1

8
(y•i − µt)

2

})
(30)

Optimality condition (shown for µc only):

0 =
∂`(T )

∂µc
=

C∑
i=1

(y
(c)
i − µc) + (31)

+

M∑
i=1

p(car|y•i , µc, µt)︷ ︸︸ ︷
κc exp

{
−1

2 (y•i − µc)
2
}

κc exp
{
−1

2 (y•i − µc)
2
}

+ κt exp
{
−1

8 (y•i − µt)
2
} (y•i − µc) (32)
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Missing Values, Optimality Conditions

Optimality conditions (shown for both µc and µt):

0 =
∂`(T )

∂µc
=

C∑
i=1

(y
(c)
i − µc) + (33)

+

M∑
i=1

p(car|y•i , µc, µt)︷ ︸︸ ︷
κc exp

{
−1

2 (y•i − µc)
2
}

κc exp
{
−1

2 (y•i − µc)
2
}

+ κt exp
{
−1

8 (y•i − µt)
2
} (y•i − µc) (34)

0 = 4
∂`(T )

∂µt
=

T∑
i=1

(y
(t)
i − µt) +

M∑
i=1

p(truck|y•i , µc, µt) (y•i − µt) (35)

Note:

� Complicated equations for the uknowns µc, µt

� Both equations contain µc and µt (cf. case with no missing variables)
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Missing Values, EM Approach

Optimality conditions (shown for both µc and µt):

C∑
i=1

(y
(c)
i − µc) +

M∑
i=1

p(car|y•i , µc, µt) (y•i − µc) = 0 (36)

T∑
i=1

(y
(t)
i − µt) +

M∑
i=1

p(truck|y•i , µc, µt) (y•i − µt) = 0 (37)

If p(car|y•i , µc, µt) and p(truck|y•i , µc, µt) were known, the estimation would’ve been easy:
� Let zi (i = 1, 2, ...,M), zi ∈ {car, truck} denote the missing values. Define
q(zi) = p(zi|y•i , µc, µt)

� The equations lead to

C∑
i=1

(y
(c)
i − µc) +

M∑
i=1

q(zi = car) (y•i − µc) = 0 (38)

⇒ µc =

∑C
i=1 y

(c)
i +

∑M
i=1 q(zi = car) y•i

C +
∑M
i=1 q(zi = car)

(39)

and similarly, µt =

∑T
i=1 y

(t)
i +

∑M
i=1 q(zi = truck) y•i

T +
∑M
i=1 q(zi = truck)

(40)
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Missing Values, EM Approach

µc =

∑C
i=1 y

(c)
i +

∑M
i=1 q(zi = car) y•i

C +
∑M
i=1 q(zi = car)

(41)

µt =

∑T
i=1 y

(t)
i +

∑M
i=1 q(zi = truck) y•i

T +
∑M
i=1 q(zi = truck)

(42)

� These expressions are weighted averages of the observed y’s. Data with non-missing x
have weight 1, the data with missing x have weight q(zi). How about trying the
following procedure for finding the ML estimate of µc and µt:

1. Initialize µc, µt

2. Compute q(zi) = p(zi|y•i , µc, µt) for all i = 1, 2, ...,M

3. Recompute µc, µt according to Eqs.(41, 42)

4. If termination condition is met, finish. Otherwise goto 2.

� This is the essence of the EM algorithm, with Step 2 called the Expectation (E) step
and Step 3 called the Maximization (M) step.
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Clustering, Soft Assignment, Relation to K-means (1)

An extreme of the previous example is that no data have the x-coordinate value (car/truck
vehicle type). Everything works just as well:

µc =

∑M
i=1 q(zi = car) y•i∑M
i=1 q(zi = car)

(43)

µt =

∑M
i=1 q(zi = truck) y•i∑M
i=1 q(zi = truck)

(44)

1. Initialize µc, µt

2. Compute q(zi) = p(zi|y•i , µc, µt) for all i = 1, 2, ...,M

3. Recompute µc, µt according to Eqs.(45, 46)

4. If termination condition is met, finish. Otherwise goto 2.

Note: Can you imagine this algorithm to end up at a local maximum?
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Clustering, Soft Assignment, Relation to K-means (2)

An extreme of the previous example is that no data have the x-coordinate (car/truck).

µc =

∑M
i=1 q(zi = car) y•i∑M
i=1 q(zi = car)

(45)

µt =

∑M
i=1 q(zi = truck) y•i∑M
i=1 q(zi = truck)

(46)

EM algorithm:

1. Initialize µc, µt

2. Compute q(zi) = p(zi|y•i , µc, µt)
for all i = 1, 2, ...,M

3. Recompute µc, µt according to Eqs.(45, 46)

4. If termination condition is met, finish.
Otherwise goto 2.

K-means:

1. ditto

2. q(zi = car) = J|y•i − µc| < |y•i − µt|K
q(zi = truck) = J|y•i −µt| ≤ |y•i −µc|K
for all i = 1, 2, ...,M

3. ditto

4. ditto

EM-based clustering uses soft assignment. K-means can be interpreted as an
EM-based clustering with hard assignment.
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Example 1 - Setting

πc = 0.6, πt = 0.4, σc = 1, σt = 2, µc = 5, µt = 10
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Data:

� 50 points from car distribution,
50 points from truck d.,
1000 points from mixed
distribution (car/truck
coordinate unknown)

Experiment:

Employ EM algorithm for estimating µ1, µ2. Use different initializations.
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Example 1 - Result
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Log-likelihood ` after 10 iterations of EM,
depending on initialization (µinit

1 , µinit
2 ).

Convergence in this case is quite fast
(3 iterations are enough for most of the
initialization values.)

Value of (µ1, µ2) after 10 iterations,
depending on initialization (µinit

1 , µinit
2 ). The

first point of convergence corresponds to
the ground truth values (µ1, µ2) = (5, 10).
The second point is a only a local
maximum of log-likelihood. It corresponds
to car distribution approximating truck
sample points, and vice versa.
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Mixture Models

Generalization of the Motivation example with missing values.

µc =

∑M
i=1 q(zi = car) y•i∑M
i=1 q(zi = car)

(47)

σ2
c =

∑M
i=1 q(zi = car) (y•i − µc)

2∑M
i=1 q(zi = car)

(48)

πc =

∑M
i=1 q(zi = car)

M
(49)
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Toy Example 2: (Temperature × Snow) Model Estimation

You are measuring temperature and amount of snow in the mountains in the month of
January. Both the temperature t and the snow s observations are binary:

t ∈ {t0=low temperature, t1=high temperature} (50)
s ∈ {s0=little snow, s1=lot of snow} (51)

Your own long-term research suggests that the model for the joint probability p(t, s) can be
parametrized by two scalars a and b and written as

p(t, s|a, b)
t0 a 5a
t1 3b b

s0 s1

(52)

At a big ski-center, you have N measurements in total, with counts for individual
possibilities for t and s as follows:

observation counts
t0 N00 N01

t1 N10 N11

s0 s1

(53)

What is the ML estimate for a and b?
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Toy Example 2: Model Estimation

p(t, s|a, b)
t0 a 5a
t1 3b b

s0 s1

observation counts
t0 N00 N01

t1 N10 N11

s0 s1

Likelihood is P (T |a, b) = aN00(5a)N01(3b)N10(b)N11.

Log-likelihood is `(T |a, b) = N00 ln a+N01 ln 5a+N10 ln 3b+N11 ln b. Maximize this
log-likelihood s.t. 6a+ 4b = 1. The Lagrangian is
L(a, b, λ) = N00 ln a+N01 ln 5a+N10 ln 3b+N11 ln b+ λ(6a+ 4b− 1). Conditions of
optimality are:

∂L

∂a
=N00

1

a
+N01

1

a
+ 6λ = 0 (54)

∂L

∂b
=N10

1

b
+N11

1

b
+ 4λ = 0 (55)

6a+ 4b = 1 (56)

and they have the solution (N = N00 +N01 +N10 +N11):

a =
N00 +N01

6N
b =

N10 +N11

4N
(57)
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Toy Example 2: Model Estimation (Incomplete Data)

Now imagine you have data from little village in the mountains. Unfortunately, there is no
measurement for which both temperature and snow amount would be available. The data
consist only of T0 reports of low temperature, T1 of high temperature, S0 of little snow and
S1 of lots of snow.
p(t, s|a, b)
t0 a 5a
t1 3b b

s0 s1

⇒
p(t0) 6a
p(t1) 4b
p(s0) a+ 3b
p(s1) 5a+ b

observation counts
t0 T0
t1 T1
s0 S0

s1 S1

Log-likelihood is `(T |a, b) = T0 ln 6a+ T1 ln 4b+ S0 ln(a+ 3b) + S1 ln(5a+ b).
Maximize this log-likelihood s.t. 6a+ 4b = 1. The Lagrangian is
L(a, b, λ) = T0 ln 6a+ T1 ln 4b+ S0 ln(a+ 3b) + S1 ln(5a+ b) + λ(6a+ 4b− 1).
Conditions of optimality:

∂L

∂a
=
T0
a

+
S0

a+ 3b
+

5S1

5a+ b
+ 6λ = 0 (58)

∂L

∂b
=
T1
b

+
3S0

a+ 3b
+

3S1

5a+ b
+ 4λ = 0 (59)

6a+ 4b = 1 (60)

→ Not as easy to solve as in the previous case!
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Toy Example 2: Model Estimation using EM algorithm

This is what EM algorithm would do to maximize likelihood for these incomplete data.
1. Make initial estimate of a and b
2. E-step: For each observation, compute the distribution over the missing value, given

the observed value and current estimate of a and b.
E. g. observation (•, s0) where ’•’ is the unknown temperature t and s0 is the observed
low amount of snow. The distrib. q(t) = p(t|s0, a, b) is computed as follows:
p(t, s|a, b)
t0 a 5a
t1 3b b

s0 s1

q(t0) = p(t0|s0, a, b) =
a

a+ 3b
(61)

q(t1) = p(t1|s0, a, b) =
3b

a+ 3b
(62)

3. M-step: Recompute parameters a, b:
Use the distribution q computed in the previous step as weights.
I.e. the considered incomplete observation (•, s0) produces two complete observations:

(t0, s0) with weight q(t0), and (t1, s0) with weight q(t1).
Let wij be the sum of weights for observations (ti, sj) across the entire dataset. Then a
and b are computed (using the result for complete data) as:

a =
w00 + w01

6N
, b =

w10 + w11

4N
(63)

4. Iterate (go to 2.)
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EM algorithm - Derivation

� T : training set

� o: all observed values (no essential difference between T and o, just notational
convenience)

� z: all unobserved values

� θ: model parameters to be estimated.

Goal: Find θ∗ using the Maximum Likelihood approach:

θ∗ = argmax
θ

`(θ) = argmax
θ

ln p(o|θ) (64)

Line of thought

Assume that solving this:
argmax

θ
ln p(o, z|θ) (65)

is easy (that is, estimation of optimal parameters had the data been complete.)

Our goal will be to rewrite Eq. (64) in a way which will involve optimization terms of kind as
in Eq. (65).
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Lower Bound on the Log Likelihood

ln p(o|θ) = ln
∑

z

p(o, z|θ) (66)

= ln
∑

z

q(z)
p(o, z|θ)

q(z)
Introduction of distribution q(z)

As ∀z : 0 ≤ q(z) ≤ 1 and∑
z q(z) = 1, the sum is now a

convex combination of
p(o, z|θ)/q(z).

(67)

≥
∑

z

q(z) ln
p(o, z|θ)

q(z)
Jensen’s inequality. Here
inequality holds because
logarithm is a concave function.

(68)

Define
L(q,θ) =

∑
z

q(z) ln
p(o, z|θ)

q(z)
. (69)

This L(q,θ) is the lower bound for ln p(o|θ) due to Eq. (68), for any distribution q.

Maximizing L(q,θ) will also push the log likelihood ln p(o|θ) upwards.
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How Tight Is This Bound? (1)

ln p(o|θ)− L(q,θ) = ln p(o|θ)−
∑

z

q(z) ln
p(o, z|θ)

q(z)
(70)

= ln p(o|θ)−
∑

z

q(z){ln p(o, z|θ)︸ ︷︷ ︸
p(z|o,θ)p(o|θ)

− ln q(z)} (71)

= ln p(o|θ)−
∑

z

q(z){ln p(z|o,θ) + ln p(o|θ)− ln q(z)} (72)

= ln p(o|θ)−
∑

z

q(z)︸ ︷︷ ︸
1

ln p(o|θ)−
∑

z

q(z){ln p(z|o,θ)− ln q(z)}

(73)

= −
∑

z

q(z) ln
p(z|o,θ)

q(z)
(74)

This is the Kullback Leibler divergence between the two distributions q(z) and p(z|o,θ):

DKL(q||p) =
∑

z

q(z) ln
q(z)

p(z|o,θ)
= −

∑
z

q(z) ln
p(z|o,θ)

q(z)
(75)
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How Tight Is This Bound? (2)

ln p(o|θ) = L(q,θ) +DKL(q||p) (76)
↑ ↑ ↑

log likelihood lower bound gap

We already know that due to Jensen’s inequality, L(q,θ) is indeed the lower bound. This is
confirmed by the fact that DKL(q||p) ≥ 0 for any q, p. Additionally,

DKL(q||p) = 0 ⇔ p = q. (77)

When q = p, the bound is tight.
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EM algorithm

ln p(o|θ) = L(q,θ) +DKL(q||p) (78)
↑ ↑ ↑

log likelihood lower bound gap

EM algorithm attempts to maximize the log-likelihood by instead maximizing the lower
bound (why ’attempts’? Because it may end up in local maximum).

1. Initialize θ = θ(0) (t = 0)

2. E-step (Expectation):
q(t+1) = argmax

q
L(q,θ(t)) (79)

3. M-step (Maximization):

θ(t+1) = argmax
θ

L(q(t+1),θ) (80)

4. If termination condition is not met, goto 2.
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Expectation step

E-step: θ(t) is fixed

q(t+1) = argmax
q
L(q,θ(t)) (81)

L(q,θ(t)) = ln p(o|θ(t))︸ ︷︷ ︸
const.

−DKL(q||p) (82)

Note: The distribution q maximizing this term is the one which minimizes the KL
divergence. KL divergence is minimized when the two distributions are the same. Thus, the
distribution maximizing Eq. (81) is

q(t+1)(z) = p(z|o,θ(t)) .

[
DKL(q||p) = −

∑
z

q(z) ln
p(z|o,θ)

q(z)

]
(83)

Note that this corresponds to what we’ve obtained e.g. in our car/truck example,

q
(t+1)
i (car) = p(car|y•i , µc, µt) , q

(t+1)
i (truck) = p(truck|y•i , µc, µt) (84)
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Maximization step

M-step: q(t+1) is fixed

θ(t+1) = argmax
θ

L(q(t+1),θ) (85)

L(q(t+1),θ) =
∑

z

q(t+1)(z) ln
p(o, z|θ)

q(t+1)(z)
(86)

=
∑

z

q(t+1)(z) ln p(o, z|θ)−
∑

z

q(t+1)(z) ln q(t+1)(z)︸ ︷︷ ︸
const.

(87)

Result: The parameters θ maximizing Eq. (85) are

θ(t+1) = argmax
θ

∑
z

q(t+1)(z) ln p(o, z|θ) . (88)

Note that this maximization is done as if all data were known (observed) and thus is often
easy (has analytic solution.) E.g. in the case of estimating mean of Gaussian mixture
component, it leads to weighted average of data.
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Summary

� EM’s most known application is estimating Gaussian Mixtures. M-step computes
probabilities that a given point is generated by given components, and E-step computes
the uknown parameters effectively (analytic solution). EM algorithm is similarly useful
and effective for more exponential family distributions.

� EM cleverly maximizes likelihood by pushing its lower bound upwards.

� It is an iterative method and may not end up in the global maximum.

� Attention needs to be applied to parameter initialization, like with other methods we’ve
already encountered (K-means, NNs, . . . )
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