
Lecture 11 – Classes & Objects III

Milan Nemy
Czech Technical University in Prague,

Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

1. Encapsulation – bundling data and methods that operate on
the data into a single unit – the class

2. Inheritance – allows one class to inherit properties and
behaviors of another class

3. Polymorphism – allows objects of different classed to be
treated as objects of a common superclass

4. Abstraction – hiding unnecessary details from the user

• idea of wrapping data and the methods that work on data
within one unit

• restrictions on accessing variables and methods directly
• can prevent the accidental modification of data
• object’s variable can only be changed by an object’s method
• variables must be accessed via getter and setter methods

@property
• Method to generate a property of an object dynamically

(e.g. calculating it from the object’s other properties)

• Use a method to access a single attribute and return it

• Use a different method to update the value of the attribute
instead of accessing it directly

• These methods are called getters and setters, because they
“get” and “set” the values of attributes, respectively

http://python-textbok.readthedocs.io/en/1.0/Classes.html# CC BY-SA 4.0 licence

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

http://python-textbok.readthedocs.io/en/1.0/Classes.html# CC BY-SA 4.0 licence

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

Naming conventions to signify the intended scope of variables
within class:
• Instance (or internal) variables starting with _

• Internal use within the class of module
• Not truly private

• Private variables with the __ prefix
• Name-mangled by Python to prevent direct access from

outside the class
• Still not absolute privacy

• Ability to define a new class that is a modified version of an
existing class

• ADVANTAGE: add new methods without modifying existing
class

• Parent class (superclass, base class) – child class (subclass,
derived class)

• New class inherits everything from its parent class
• How to replace or override a parent method?

• New class inherits everything from its parent class
• How to replace or override a parent method?

• New class inherits everything from its parent class
• How to replace or override a parent method?

• Child class can override a method from the parent
• What if it wanted to call that parent method?

• It is possible to apply the same operation to different objects,
regardless of their class

__init__() of the
parent class Quite
called automatically!

Different versions of
say() provide different
behavior

• Python goes further and lets you run who() and says()
methods of any objects that have them

BabblingBrook has no
relation to Quote
class or its
descendants!

This principle is sometimes
called duck typing.

Duck test:
"If it walks like a duck and it quacks like a duck, then it must be a duck“
Meaning:
An object's suitability for use is determined by its behavior rather than its explicit type.

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

source http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

• Polymorphism == ability to process objects differently based on data type

• There are certain operations that can be applied to many types, such as
the arithmetic operations …

• EXAMPLE: The multadd operation takes three parameters: multiplies the
first two and then adds the third

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• EXAMPLE: front_and_back – consider a function which prints
a list twice: forward and backward

• The reverse method is a modifier therefore a copy needs to
be made before applying it (this way we prevent to modify the
list the function gets as a parameter!)

• Function that can take arguments with different types and
handles them accordingly is called polymorphic

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• Python’s fundamental rule of polymorphism is called
the duck typing rule: If all of the operations inside the
function can be applied to the type, the function can be
applied to the type.

• Operations in the front_and_back : copy, reverse, print

• EXAMPLE: What about our Point class?
The copy method works on any object; already written
a __str__ method for Point objects for the str() conversion,
only the reverse method for the Point class is needed!

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

source http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

• Abstraction focuses on hiding the implementation details and
showing only the essential features of an object

• It allows the user to focus on what an object does rather than
how it does it

abc module (Abstract
Base Classes)

Animal inherits ABC

@abstractmethod
decorator

Objects based on Animal
cannot be initialized!

Abstract methods MUST be
implemented by derived
classes.

• Abstraction focuses on hiding the implementation details and
showing only the essential features of an object

• It allows the user to focus on what an object does rather than
how it does it

• Abstraction focuses on hiding the implementation details and
showing only the essential features of an object

• It allows the user to focus on what an object does rather than
how it does it

The abstract class tells the user: "You can call sound and move on any
Animal, but you don’t need to know how they are implemented."

http://openbookproject.net/thinkcs/python/english3e/index.html

GNU Free Documentation License Version 1.3

https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle

https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle

http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

This lecture re-uses selected parts of the OPEN BOOK PROJECT
Learning with Python 3 (RLE)

http://openbookproject.net/thinkcs/python/english3e/index.html
available under)

• Version date: October 2012
• by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
• Source repository is at https://code.launchpad.net/~thinkcspy-rle-

team/thinkcspy/thinkcspy3-rle
• For offline use, download a zip file of the html or a pdf version

from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

http://python-textbok.readthedocs.io/en/1.0/Classes.html#

CC BY-SA 4.0 licence

This lecture re-uses selected parts of the PYTHON TEXTBOOK
Object-Oriented Programming in Python

http://python-textbok.readthedocs.io/en/1.0/Classes.html#
(released under CC BY-SA 4.0 licence Revision 8e685e710775)

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

	Slide 1
	Slide 2: Four Principles of Object-Oriented Programming
	Slide 3: Encapsulation
	Slide 4: PROPERTY
	Slide 5: EXAMPLE – PROPERTY
	Slide 6: Variables in Classes – Naming Conventions
	Slide 7: Variables in Classes – Naming Conventions
	Slide 8: Getter and Setters
	Slide 9: Inheritance
	Slide 10: Inheritance – Override a Method
	Slide 11: Inheritance – Override a Method
	Slide 12: Inheritance – Add a Method
	Slide 13: Getting Help from Your Parent
	Slide 14: Polymorphism
	Slide 15: Polymorphism
	Slide 16: Class Point
	Slide 17: POLYMORPHISM
	Slide 18: POLYMORPHISM
	Slide 19: POLYMORPHISM
	Slide 20: Abstraction
	Slide 21: Abstraction
	Slide 22: Abstraction
	Slide 23: REFERENCES

