& ... PRG-PROGRAMMING ESSENTIALS

Lecture 11 — Classes & Objects il

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

Four Principles of Object-Oriented Programming

— bundling data and methods that operate on
the data into a single unit — the class
— allows one class to inherit properties and

behaviors of another class
— allows objects of different classed to be
treated as objects of a common superclass
— hiding unnecessary details from the user

13/12/2024 Milan Nemy, Czech Technical University in Prague

Encapsulation

idea of wrapping data and the methods that work on data

within one unit
restrictions on accessing variables and methods directly

can prevent the accidental modification of data
object’s variable can only be changed by an object’s method
variables must be accessed via getter and setter methods

13/12/2024 Milan Nemy, Czech Technical University in Prague

PROPERTY

Method to generate a property of an object
(e.g. calculating it from the object’s other properties)

Use a method to

Use a different method to
instead of accessing it directly

These methods are called and , because they
“get” and “set” the values of attributes, respectively

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

13/12/2024 Milan Nemy, Czech Technical University in Prague

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

CTU

EXAMPLE - PROPERTY

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Person:
(name, surname):
.name = name
.surname = surname

property
fullname():
o %" % (.SUFHBNE}

@fullname.setter
fullname(value):

name, surname = value.split(" "
.hame = name
.Surname = surname

@fullname.deleter
A GET) :
. hame
. Surname

SOURCE http://python-textbok.readthedocs.io/en/1.0/Classes.html# UNDER CC BY-SA 4.0 licence Revision 8e685e710775

13/12/2024 Milan Nemy, Czech Technical University in Prague

http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

Variables in Classes —- Naming Conventions

Naming conventions to signify the intended scope of variables

within class:
* Instance (or internal) variables starting with _
within the class of module

Not truly private
with the _ prefix
Name-mangled by Python to prevent direct access from

outside the class

Still not absolute privacy

13/12/2024 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

class VariableConvention:

def __init_ (self, name, age):

self.name = name # Public variable
self. internal id = 12345 # Internal variable
self._ private _data = age # Private variable

def display(self):

print(f"Name: {self.name}")

print(f"Internal ID: {self. internal_id}")

print(f"Private Data: {self._private_datal™)

def update_private_data(self, new_age):

self. private data = new_age # Modifying the
obj = VariableConvention("Alice", 38)
print{obj.name) # Output: Alice (Public

print{obj._internal_id) # Output: 12345 (Access

13/12/2024

Variables in Classes —- Naming Conventions

try:
print{obj.__ private_data)
except AttributeError as e:
print(e) # Output: 'VariableConventio ject ttribute °__ ate_data
obj.update private data(35)
obj.display()
7

Milan Nemy, Czech Technical University in Prague

CTU

Getter and Setters

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

class Person:

def init (self, name, age):

self. name = nams # Internal variable (
self. age = age # Private variable (name-mangled)
Getter for the public interface
@property
def name(self):
return self. name
Setter for the public interface

@name.setter
def name(self, new_name):
if isinstance(new_name, str) and new_name.strip():
self. _name = new_name
elze:

raise ValueError(“Name must be a non-empty string.™)

try:
person.age = -5
except ValueError as e:

print(e) # Output: Age must be a positive in

13/12/2024

Getter for private variable __ age
@property

def age(self):
return self. age
[@age.setter
def age(self, new_age):
if isinstance(new_age, int) and new_age > @8:
self. age = new_age
elze:

raise ValueError({"Age must be a positive integer.")

A method demonstrating interna
def display(self):
print({f"Name: {self. namel}, Age: {self._ agel}")
print(person.name) # Output: ALi
person.name = "Bob"

print(person.name) # Output: Bob

print(person.age) # Output: 38
person.age = 35

print(person.age) # Output: 35

Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Inheritance

Ability to define a new class that is a modified version of an

existing class

ADVANTAGE: add new methods without modifying existing

class
Parent class (superclass, base class) — child class (subclass,
derived class)

class Car():
pass

class Yugo(Car):
pass

In [3]: give_me_car = Car()
In [4]: give_me_yugo = Yugo()

In [5]: class Car():
def exclaim(self):
print("I'm a Car!")

ne: class Yugo(Car):
pass

In [12]: give_me_car = Car()

In [13]: give_me_yugo = Yugo()
In [14]: give_me_car.exclaim()
I'm a Car!

In [15]: give_me_yugo.exclaim()
I'm a Car!

13/12/2024

Milan Nemy, Czech Technical University in Prague

CTU

Inheritance — Override a Method

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

* New class inherits everything from its parent class

* How to replace or a parent method?

In [16]: class Car(): In [22]: car = Car()
def exclaim(self): In [23]: yugo = Yugo()
print("I'm & Cart™) In [24]: car.exclaim()
In [17]: class Yugo(Car): I'm a Car!

def exclaim(self): In [25]: yugo.exclaim()
print("I'm a Yugo!") I'm a Yugo!

13/12/2024 Milan Nemy, Czech Technical University in Prague

CTU

Inheritance — Override a Method

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

* New class inherits everything from its parent class

* How to replace or a parent method?

©, class Person(): 2usages
Q def __init__(self, name):
self.name = name

Person('Fudge"')
MDPerson('Fudge") Fudge
professor = ProfPerson('Fudge")

person

doctor
class MDPerson(Person):

Doctor Fudge

def __init__(self, name):

self.name = "Doctor " + name print(person.name) Professor Fudge
print(doctor.name)
class ProfPerson(Person): print(professor.name)

def __init__(self, name):
self.name = "Professor " + name

13/12/2024 Milan Nemy, Czech Technical University in Prague 11

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Inheritance - Add a Method

* New class inherits everything from its parent class

* How to replace or

a parent method?

@ class Car(): 2 usages
@) def exclaim(self):
print{"I'm a Car")

class Yugo(Car): 1usage
@' def exclaim(self):
print("I'm a Yugo")
def honk(self): 1usage
print("brrrRO00DARRRRRP")

13/12/2024

yugo = Yugo()
yugo. honk()

!

brrrROOOARRRRRP

car = Car()
car.honk()

!

Traceback (most recent call last):
File "C:\Users\milan\PycharmProjects‘\ChNhtst.py", 1ine 12, in <module=
car.honk()
AttributeError: 'Car' object has no attribute 'honk!

Milan Nemy, Czech Technical University in Prague 12

CTU

o Getting Help from Your Parent

UNIVERSITY
IN PRAGUE

* Child class can override a method from the parent

 What if it wanted to call that parent method?

class Person(): 1usage
def __init__(self, name):
self.name = name

class EmailPerson(Person): 1 usage

def __init__(self, name, email):

super().__init__(name)
self.email = email

13/12/2024

bob = EmailPerson(name: 'Bob Griffin',
print(bob.name)
print(bob.email)

!

Bob Griffin
bob@griffin.com

email: 'bob@griffin.com')

Milan Nemy, Czech Technical University in Prague

13

CTU

Polymorphism
CZECH TECHNICAL y
UNIVERSITY

IN PRAGUE

* |tis possible to apply the same operation to different objects,

regardless of their class

@, class Quote(): 2usages

def __init__(self, person, words): In [4]: speakerl = Quote('Charlie Brown', "Good grief")
self.person = person In [5]: print(speakerl.who(), 'says:', speakerl.says())
self.words = words Ll
def who(self): Different versions of Charlie Brown says: Good grief.
return self.person say() provide different In [6]: speaker2 = QuestionQuote('Snoopy', "Do you have any cookies")
@ def says(self): behavior :
return self.words + "." In [7]: print(speaker2.who(), 'says:', speaker2.says())
class QuestionQuote(Quote): Snoopy says: Do you have any cookies?
@' def says(self): — In [8]: speaker3 = ExclamationQuote('Lucy', "Get off my football")
return self.words + "?" —m't—() of the
parent class Ql“!lte In [9]: print(speaker3.who(), 'says:', speaker3.says())
class ExclamationQuote(Quote): called automatically! L
€ def says(self): Lucy says: Get off my football!

return self.words + "1

13/12/2024 Milan Nemy, Czech Technical University in Prague 14

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Polymorphism

Python goes further and lets you run who() and says()

methods of any objects that have them

In [12]: def who_says(obj):

BabblingBrook has no
relation to Quote
class or its
descendants!

In [13]: who_says(speakerl)
Charlie Brown says Good grief.

In [168]: class BabblingBrook(): /

def who(self):
return 'Brook’

def says(self):
return 'Babble’

In [11]: brook = BabblingBrook()

13/12/2024

In [14]: who_says(speaker2)

Snoopy says Do you have any cookies?
In [15]: who_says(speaker3)

Lucy says Get off my football!

In [16]: who_says(brook)

Brook says Babble

print(obj.who(), 'says', obj.says())

This principle is sometimes
called duck typing.

Duck test:

"If it walks like a duck and it quacks like a duck, then it must be a duck”

Meaning:

An object's suitability for use is determined by its behavior rather than its explicit type.

Milan Nemy, Czech Technical University in Prague

15

CTU

Class Point

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

c¢lass Point:
""" Create a new Point, at coordinates x, y """
def init (self, x=0, y=0):
""" Create a new point at x, y
self.x = x
self.y Y

monon

I

def distance from origin(self):
""" Compute my distance from the origin
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

mnn

class Point:
Previously defined methods here...

def _ add__ (self, other):
return Point(self.x + other.x, self.y + other.y)

def mul (self, other):

return self.x * other.x + self.y * other.y

def rmul (self, other):
return Point(other * self.x, other * self.y)

>>> pl Point (3, 4)
>>> p2 Point (5, 7)
>>> print(pl * p2)
43

>>> print(2 * p2)
(10, 14)

source http://openbookproject.net/thinkcs/python/english3e/classes _and objects I.html

13/12/2024

Milan Nemy, Czech Technical University in Prague 16

http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html

CTU

s POLYMORPHISM
UNIVERSITY
IN PRAGUE
def multadd (x, y, z): >>> pl = Point(3, 4)
return x * y + z >>> p2 = Point(5, 7)
>>> print(multadd (2, pl, p2))
(11, 15)
>>> multadd (3, 2, 1) >>> print(multadd (pl, p2, 1))
7 44

* There are certain operations that can be applied to many types, such as
the arithmetic operations ...

« EXAMPLE: The operation takes three parameters: multiplies the
first two and then adds the third

source http://openbookproject.net/thinkcs/python/english3e/even _more oop.html

13/12/2024 Milan Nemy, Czech Technical University in Prague

17

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

CTU

CZECH TECHNICA
UNIVERSITY
IN PRAGUE

13/12/2024

POLYMORPHISM
def front and back(front):
import copy >>> my list = [1, 2, 3, 4]
back = copy.copy(front) >>> front and back(my list)
back.reverse() (1, 2, 3, 4114, 3, 2, 1]

print(str(front) + str(back))

EXAMPLE: — consider a function which prints
a list twice: forward and backward

The reverse method is a therefore a copy needs to

be made before applying it (this way we prevent to modify the
list the function gets as a parameter!)

Function that can take arguments with different types and
handles them accordingly is called

source http://openbookproject.net/thinkcs/python/english3e/even _more oop.html
Milan Nemy, Czech Technical University in Prague

18

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

POLYMORPHISM

def reverse(self):
(self.x , self.y) = (self.y, self.x)

>>> p = Point(3, 4)
>>> front and back(p)
(3, 4)(4, 3)

e Python’s fundamental rule of polymorphism is called
the . If all of the operations inside the
function can be applied to the type, the function can be
applied to the type.

e Operationsin the . copy, reverse, print

« EXAMPLE: What about our Point class?
The method works on any object; already written

a method for Point objects for the conversion,

only the method for the Point class is needed!

source http://openbookproject.net/thinkcs/python/english3e/even _more oop.html
13/12/2024 Milan Nemy, Czech Technical University in Prague

19

http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html
http://openbookproject.net/thinkcs/python/english3e/even_more_oop.html

CTU

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

Abstraction

e Abstraction focuses on hiding the implementation details and
showing only the essential features of an object

* It allows the user to focus on what an object does rather than
how it does it

from abc import ABC, abstractmethod

abc module (Abstract
Base Classes)

ADSTract Dase CLass

class Animal(ABC):

{@abstractmethod

Animal inherits ABC

—
/’

def sound{self):

"""Abstract method, must be implemented by subclasses."™"

@abstractmethod
decorator

pass

@abstractmethod

13/12/2024

def move(self):
"""Abstract method, must be implemented by subclasses.”™"

pass

Milan Nemy, Czech Technical University in Prague

Objects based on Animal
cannot be initialized!

Abstract methods MUST be
implemented by derived
classes.

20

CTU

Abstraction

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Abstraction focuses on hiding the implementation details and
showing only the essential features of an object

It allows the user to focus on what an object does rather than
how it does it

<ithel ace 3mnl ementing ThH hoctpagrt matho,
Subclass implementi che abpsTract 2t

from abc import ABC, abstractmethod class Dog(Animal):
def sound(self):

Abstract base class return "Bark"
class Animal(ABC):
@abstractmethod def move(self):

def sound(self): return "Runs on four legs”

[Icipag the abstrortion

Using the aostractior

"""Abstract method, must be implemented by subclasses.™™” def animal_activity(animal: Animal):
pass # Subclass implementing the abstract methods

print{f"Animal sound: {animal.sound(}}")
class Bird(Animal):

def sound(self):

print{f”"Animal movement: {animal.move()}")
@abstractmethod

def move(self): return "Chirp”

"""Abstract method, must be implemented by subclasses."™"

det move(self):
pass

return "Flies in the sky™

13/12/2024 Milan Nemy, Czech Technical University in Prague 21

CTU

Abstraction

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Abstraction focuses on hiding the implementation details and
showing only the essential features of an object

It allows the user to focus on what an object does rather than
how it does it

Subclass implementing the abstract methods
class Dog(Animal):
def sound(self):

return "Bark”

In [3]: dog = Dog()
def move(self):

In [4]: bird = Bird()

LU I TS e In [5]: animal_activity(dog)
def animal_activity(animal: Animal):

return "Runs on four legs”

Animal sound: Bark

Subrclass -L.-.-.-"_E.-.-i._.-Tf,-

hhhhh

4=

print{f"Animal sound: {animal.sound(}}") Animal movement: Runs on four legs

R print{f"Animal movement: {animal.move(}}") In [6]

def sound(self):

return "Chirp”

: animal_activity(bird)
Animal sound: Chirp
Animal movement: Flies in the sky

def move(self):

e e The abstract class tells the user: "You can call sound and move on any
Animal, but you don’t need to know how they are implemented."

13/12/2024 Milan Nemy, Czech Technical University in Prague 22

CTU
REFERENCES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under

Version date: October 2012
by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)
Source repository is at

For offline use, download a zip file of the html or a pdf version
from

This lecture re-uses selected parts of the PYTHON TEXTBOOK

(released under Revision 8e685e710775)

13/12/2024 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/
http://python-textbok.readthedocs.io/en/1.0/Classes.html
https://creativecommons.org/licenses/by-sa/4.0/

	Slide 1
	Slide 2: Four Principles of Object-Oriented Programming
	Slide 3: Encapsulation
	Slide 4: PROPERTY
	Slide 5: EXAMPLE – PROPERTY
	Slide 6: Variables in Classes – Naming Conventions
	Slide 7: Variables in Classes – Naming Conventions
	Slide 8: Getter and Setters
	Slide 9: Inheritance
	Slide 10: Inheritance – Override a Method
	Slide 11: Inheritance – Override a Method
	Slide 12: Inheritance – Add a Method
	Slide 13: Getting Help from Your Parent
	Slide 14: Polymorphism
	Slide 15: Polymorphism
	Slide 16: Class Point
	Slide 17: POLYMORPHISM
	Slide 18: POLYMORPHISM
	Slide 19: POLYMORPHISM
	Slide 20: Abstraction
	Slide 21: Abstraction
	Slide 22: Abstraction
	Slide 23: REFERENCES

