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1. Encapsulation – bundling data and methods that operate on 
the data into a single unit – the class

2. Inheritance – allows one class to inherit properties and 
behaviors of another class

3. Polymorphism – allows objects of different classed to be 
treated as objects of a common superclass

4. Abstraction – hiding unnecessary details from the user



• idea of wrapping data and the methods that work on data 
within one unit

• restrictions on accessing variables and methods directly
• can prevent the accidental modification of data
• object’s variable can only be changed by an object’s method
• variables must be accessed via getter and setter methods



@property
• Method to generate a property of an object dynamically

(e.g. calculating it from the object’s other properties)

• Use a method to access a single attribute and return it
 

• Use a different method to update the value of the attribute 
instead of accessing it directly

• These methods are called getters and setters, because they 
“get” and “set” the values of attributes, respectively
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Naming conventions to signify the intended scope of variables 
within class:
• Instance (or internal) variables starting with _

• Internal use within the class of module
• Not truly private

• Private variables with the __ prefix
• Name-mangled by Python to prevent direct access from 

outside the class
• Still not absolute privacy







• Ability to define a new class that is a modified version of an 
existing class

• ADVANTAGE: add new methods without modifying existing 
class

• Parent class (superclass, base class) – child class (subclass, 
derived class)



• New class inherits everything from its parent class
• How to replace or override a parent method?
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• New class inherits everything from its parent class
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• Child class can override a method from the parent
• What if it wanted to call that parent method?



• It is possible to apply the same operation to different objects, 
regardless of their class

__init__() of the 
parent class Quite 
called automatically!

Different versions of 
say() provide different 
behavior



• Python goes further and lets you run who() and says() 
methods of any objects that have them

BabblingBrook has no 
relation to Quote 
class or its 
descendants!

This principle is sometimes 
called duck typing.

Duck test: 
"If it walks like a duck and it quacks like a duck, then it must be a duck“
Meaning:
An object's suitability for use is determined by its behavior rather than its explicit type.
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• Polymorphism == ability to process objects differently based on data type

• There are certain operations that can be applied to many types, such as 
the arithmetic operations …

• EXAMPLE: The multadd operation takes three parameters: multiplies the 
first two and then adds the third
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• EXAMPLE: front_and_back – consider a function which prints 
a list twice: forward and backward

• The reverse method is a modifier therefore a copy needs to 
be made before applying it (this way we prevent to modify the 
list the function gets as a parameter!)

• Function that can take arguments with different types and 
handles them accordingly is called polymorphic
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• Python’s fundamental rule of polymorphism is called 
the duck typing rule: If all of the operations inside the 
function can be applied to the type, the function can be 
applied to the type.

• Operations in the front_and_back : copy, reverse, print

• EXAMPLE: What about our Point class?
The copy method works on any object; already written 
a __str__ method for Point objects for the str() conversion, 
only the reverse method for the Point class is needed!
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• Abstraction focuses on hiding the implementation details and 
showing only the essential features of an object

• It allows the user to focus on what an object does rather than 
how it does it

abc module (Abstract 
Base Classes)

Animal inherits ABC

@abstractmethod 
decorator

Objects based on Animal 
cannot be initialized!

Abstract methods MUST be 
implemented by derived 
classes.
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• Abstraction focuses on hiding the implementation details and 
showing only the essential features of an object

• It allows the user to focus on what an object does rather than 
how it does it

The abstract class tells the user: "You can call sound and move on any 
Animal, but you don’t need to know how they are implemented."
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