fl8 ... PRG—PROGRAMMING ESSENTIALS

Lecture 7 —Files, 1/0

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

RECAP: MODULES — SCOPE

e A is a textual region of a Python program where a
namespace is directly accessible

What types of scopes can be defined?
refers to identifiers declared within a function /

class (these identifiers are kept in the namespace that belongs

to the function, and each function has its own namespace)
refers to all the identifiers declared within the
current module (file)
refers to all the identifiers built into Python
(those like range and min that can be used without having to
import anything)

ssssss http://openbookproject.net/thinkcs/python/english3e/modules.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/modules.html
http://openbookproject.net/thinkcs/python/english3e/modules.html

CTU

RECAP: MODULES — SCOPE

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def range(n): n =10
return 123*n m= 3
def f(n):
print(range(10)) m=7

return 2*n+m

print(f(5), n, m)

What are the scope precedence rules?
 The same name can occur in more than one of these scopes, but the

, and the global scope always gets used in preference to the built-in
scope

Names can be “ ” from use if own variables or functions reuse those
names (shadowing)

EXAMPLE: variables n and m are created just for the duration of the
execution of f since they are created in the local namespace of function f
(precedence rules apply)

source http://openbookproject.net/thinkcs/python/english3e/modules.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/modules.html
http://openbookproject.net/thinkcs/python/english3e/modules.html

CTU

RECAP: MODULES — THE DOT OPERATOR

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

import math
x = math.sqrt(10)
def area(radius):
import math
return math.pi * radius * radius

from math import cos, sin, sqrt

x = sqrt(10) X = math.sqrt(10) # This gives an error

from math import * # Import all the identifiers from math, >>> import math as m
adding them to the current namespace. >>> m.pi

x = sqrt(1e) # Use them without qualification. 3.141592653589793

e Variables defined are called of the module
« Attributes are accessed using the operator (.)

e When a dotted name is used it is often referred to it as a
fully qualified name

source http://openbookproject.net/thinkcs/python/english3e/modules.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/modules.html
http://openbookproject.net/thinkcs/python/english3e/modules.html

CTU

FILES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

During program execution, its data are stored in random
access memory ()

RAM is fast and inexpensive but

To preserve data when the system is not powered the data
has to be written to a

Data on storage media are stored in

on the media called
By and files, programs can save information
between program runs
To open a file, we specify its and indicate
whether we want to or

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

myfile = open("test.txt", "w")

myfile.write("My first file written from Python\n")
myfile.write("-————————— \n")
myfile.write("Hello, world!\n")

myfile.close()

« EXAMPLE: program writes three lines of text into a file

* Line 1: the function takes two arguments:
the first is the of the file, and the second is the

* Mode means that we are opening the file for

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

myfile = open("test.txt", "w")

myfile.write("My first file written from Python\n")
myfile.write("-———————— \n")
myfile.write("Hello, world!\n")

myfile.close()

EXAMPLE: program writes three lines of text into a file

Opening a file creates a file
Variable myfile refers to the new handle object

Program calls (dot notation) changing
the actual file which is usually located on our disk

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

myfile = open("test.txt", "w")

myfile.write("My first file written from Python\n")
myfile.write("-———————— \n")
myfile.write("Hello, world!\n")

myfile.close()

To into the file we invoke the on the handle (lines
2,3 and 4)

Lines 2 — 4: should usually be replaced by a loop that writes more lines
into the file, i.e. the content we want to store

Line 5: the file handle tells the system that writing the content is
finished and makes the disk file available for reading by other programs

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES — HANDLE

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

We’re all familiar with a remote control for a TV. We perform operations on the remote control —
switch channels, change the volume, etc. But the real action happens on the TV. So, by simple
analogy, we’d call the remote control our handle to the underlying TV.

Sometimes we want to emphasize the difference — the file handle is not the same as the file, and
the remote control is not the same as the TV. But at other times we prefer to treat them as a
single mental chunk, or abstraction, and we’ll just say “close the file”, or “flip the TV channel”.

15/11/24

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

mynewhandle = open("test.txt", "r")

while True: # Keep reading forever
theline = mynewhandle.readline() # Try to read next line
if len(theline) == 0: # If there are no more lines
break i leave the loop

Now process the line we've just read
print(theline, end="")

mynewhandle.close()

* Reading a file one using the mode argument
IS for reading

* More extensive logic into the body of the loop at line 8

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

10

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

mynewhandle = open("test.txt", "r")

while True: # Keep reading forever
theline = mynewhandle.readline() # Try to read next line
if len(theline) == 0: # If there are no more lines
break # leave the loop

Now process the line we've just read
print(theline, end="")

mynewhandle.close()

Line 8: the newline character that print usually appends to our strings is
suppressed

e The string already has its own newline: the method in line 3

returns everything up to and

* The end-of-file detection logic: when there are no more lines to be read
from the file, returns an
(no newline at the end, hence its length is 0)

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague 11

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES — END OF FILE

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

In our sample case here, we have three lines in the file, yet we enter the loop four times. In

Python you only learn that the file has no more lines by failure to read another line. f[n some other

programming languages (e.g. Pascal), things are different: there you read three lines, but you have
what is called look ahead — after reading the third line you already know that there are no more
lines in the file. You’re not even allowed to try to read the fourth line.

So the templates for working line-at-a-time in Pascal and Python are subtly different!

When you transfer your Python skills to your next computer language, be sure to ask how you’ll

know when the file has ended: is the style in the language “try, and after you fail you’ll know”for

is it “look ahead”™?

If we try to open a file that doesn’t exist, we get an error:

>>> mynewhandle = open("wharrah.txt", "r")
IOError: [Errno 2] No such file or directory: "wharrah.txt"

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

12

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

FILES — READLINES vs. READ

f = open("friends.txt", "r")
xs = f.readlines()
f.close()

Xs.sort()

g = open("sortedfriends.txt", "w")
for v in xs:

g.write(v)
g.close()

« EXAMPLE: fetch data from a disk file, perform processing

(

e The

15/11/24

) and turn it into a list of lines written back into the file

s method in line 2 reads all the lines and returns
a list of the strings

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

13

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES — READLINES vs. READ

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

f = open("somefile.txt")
content = f.read()
f.close()

words = content.split()
print("There are {0} words in the file.".format(len(words)))

EXAMPLE: reading the

Read the complete contents of the file into a single string, and then to use
string-processing skills to work with the contents

Not interested in the line structure of the file

EXAMPLE: use the method on strings which can break a string into
words (e.g. counting the number of words in a file)

The mode in line 1 is omitted since Python opens the file for
reading

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague 14

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

f = open("somefile.txt")
content = f.read()
f.close()

words = content.split()
print("There are {0} words in the file.".format(len(words)))

In the above example, we’re assuming that the file somefile.txt is in the same directory as your Python
source code. If this is not the case, you may need to provide a full or a relative path to the file. On Windows, a
full path could look like "c:\\temp\\somefile.txt", while on a Unix system the full path could be

"/home/jimmy/somefile.txt".

We’ll return to this later in this chapter.

15/11/24

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

15

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

FILES — BINARY

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

f = open("somefile.zip", "rb")
g = open("thecopy.zip", "wb")

while True:
buf = f.read(1024)
if len(buf) ==
break
g.write(buf)

f.close()
g.close()

Working with

Binary files usually hold photographs, videos, zip files, executable
programs

Binary files are and cannot be opened with a
normal text editor

Reading binary files gets back rather than a string

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

16

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES — BINARY

f = open("somefile.zip", "rb")
g = open("thecopy.zip", "wb")

while True:
buf = f.read(1024)
if len(buf) ==
break
g.write(buf)

f.close()
g.close()

Mode to tell Python that the files are binary
Line 5: read takes an argument telling how many bytes to attempt to read

from the file

(read and write up to 1024 bytes on each iteration of the loop)

When an

is returned from the attempt to read, break out of

the loop and close both the files

The type of

is bytes

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

17

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

EXAMPLE — FILE CONTENT FILTER

def filter(oldfile, newfile):
infile = open(oldfile, "r")
outfile = open(newfile, "w")
while True:
text = infile.readline()

if len(text) == 0:
break

if text[0] == "#":
continue

Put any more processing logic here
outfile.write(text)

infile.close()
outfile.close()

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

18

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

EXAMPLE — FILE CONTENT FILTER

def filter(oldfile, newfile):
infile = open(oldfile, "r")
outfile = open(newfile, "w")
while True:
text = infile.readline()
if len(text) ==
break
if text[0] == "#":
continue

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Put any more processing logic here
outfile.write(text)

infile.close()
outfile.close()

« EXAMPLE: filter that copies one file to another, omitting any
lines that begin with #, i.e. comments

* Line 9: the statement skips over remaining lines in
the current iteration of the loop, but the loop will still iterate

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

15/11/24

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

EXAMPLE — FILE CONTENT FILTER

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def filter(oldfile, newfile):
infile = open(oldfile, "r")
outfile = open(newfile, "w")
while True:
text = infile.readline()
if len(text) ==
break
if text[0] == "#":
continue

Put any more processing logic here
outfile.write(text)

infile.close()
outfile.close()

If text is the , the loop exits
If the first character of text is a , the flow of execution goes to

the top of the loop, ready to start processing the next line
Only if both conditions fail, writing the line into the new file

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague

20

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

DIRECTORIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Directories

A directory is an organizational unit of the file system that allows for the hierarchichal structure.

It can contain files and other directories. Each directory is itself contained in some other
directory.

The root directory is special. It is always present in the filesystem and designates the start of
the hierarchy. It is denoted with forward slash (/) on Linux-types of systems. On Windows, there
is a separate root directory on each disk, and they are denoted by backslashes (\).

Each directory contains 2 special entries:

e . is the current directory itself
» .. is the parent directory

source courtesy of Petr Posik BE5b33PR 2016/2017

15/11/24 Milan Nemy, Czech Technical University in Prague 21

CTU

DIRECTORIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

L1 L]

>>> wordsfile = open("/usr/share/dict/words", "r")

>>> wordlist = wordsfile.readlines()

>>> print(wordlist[:6])

['\n', 'A\n', "A's\n", 'AOL\n', "AOL's\n", 'Aachen\n']

Files on non-volatile storage media are organized by a set of rules known
as a

File systems are made of and (and symbolic links), which
are for files and other directories.

When we create a new file by opening it and writing, the new file goes

into the

When we want to open a file somewhere else, we have to specify

the to the file, which is the (or folder) where
the file is located

source http://openbookproject.net/thinkcs/python/english3e/files.html

15/11/24 Milan Nemy, Czech Technical University in Prague 22

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

PATHS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Current working directory

Python keeps track of the current working directory (CWD), in which it looks for files. The
default setting of CWD is platform dependent, but usually it is the directory from which the

Python interpreter was run (not the directory where the interpreter is stored).

You can find out the CWD using function getcwd from module os. Let's see what the CWD is
for the current notebook:

import os
print (os.getcwd())

C:\P\0Teaching\programming essentials\prg-notes

source courtesy of Petr Posik BE5b33PR 2016/2017

15/11/24 Milan Nemy, Czech Technical University in Prague

23

CTU

PATHS

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

15/11/24

Paths

Paths are sequences of directory names possibly ended with a filename which unambiguosly

resolve to a directory or file name in the filesystem.

Absolute paths always start from the root directory (/, forward slash), on Windows often
preceded by drive letter (C:\\). An example:

/home/posik/teaching/prg/lectures/files.pdf

Relative paths start from the current working directory. Examples, assuming the CWD is
/home/posik/teaching:

prg/lectures/files.pdf
../../svoboda/presentations/upload system.pdf

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

24

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

PATHS

>>> wordsfile = open("/usr/share/dict/words", "r")
>>> wordlist = wordsfile.readlines()

>>> print(wordlist[:6])

['\n', 'A\n', "A's\n", 'AOL\n', "AOL's\n", 'Aachen\n']

A Windows path might be:
or
Backslashes are used to escape things like newlines and tabs, we need to

to get one! (the length of these
two strings is the same)

We cannot use / or \ as part of a filename
(reserved as a delimiter between directory and filenames)

The file should exist on Unix-based systems, and
contains a list of words in alphabetical order

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

25

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

PATHS

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

15/11/24

Navigating in the file system

In the OS shell, you would use command cd or chdir to change the working directory. Similarly,

you can use the Python function os.chdizr ():

import os

orig wd = os.getcwd()
os.chdir ('/P/0Teaching')
print (os.getcwd ())

C:\P\OTeaching

Now we are in a different directory. And we can change it back:
os.chdir (orig wd)
print (os.getcwd())
C:\P\OTeaching\programming essentials\prg-notes

source courtesy of Petr Posik BE5Sb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

26

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES

Working with file paths

Module os . path contains functions for working with file paths:

fpath = os.path.abspath('files.pdf')
print (fpath)

C:\P\QTeaching\programming essentials\prg-notes\files.pdf

print (os.path.dirname (fpath))

C:\P\OTeaching\programming essentials\prg-notes

print (os.path.basename (fpath))

files.pdf

print (os.path.splitext (os.path.basename (fpath)))
('files', '.pdf')

How to correctly create a path from fragments?

fpath2 = os.path.jein('\\', 'P', 'OTeaching')

print (fpath2)

\P\0Teaching

How to get a path to a directory or a file relative to CWD?
print (os.path.relpath (fpath2))

AN

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

27

CTU

ENCODING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

Encoding of strings and files

Strings are actually an abstraction. They are just sequences of bytes, but these bytes (or their
groups) are interpreted as indices into a table of symbols containing upper- and lowercase
letters, numbers, special characters and other symbols. The table with these symbols is called
an encoding. The same string may look as complete gibberish if it is read with different

encoding than the one used when creating it.

« ASCII: contains 127 characters, english upper- and lowercase letters, numbers, and
some symbols. No characters from national alphabets.

« | UTF-8: Unicode encoding that supports virtually any national alphabet, contains ASCII
as its subset. USE IT!

This holds also for text files!

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

28

CTU

ENCODING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Opening text file with encoding

Function open () accepts several other parameters, among them the encoding. If you will

explicitly use UTF-8 each time you call that function, you will save yourself a lot of trouble:

f = open('file to open.txt', 'r', encoding='utf-8'")

f.close ()

or

with open('file to open.txt', 'r', encoding='utf-8') as f:

source courtesy of Petr Posik BE5b33PR 2016/2017

15/11/24 Milan Nemy, Czech Technical University in Prague

29

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES — ,WITH” STATEMENT

The with statement

Because every call to open () should have a corresponding call to the close () method, Python

provides a with statement that automatically closes a file when the end of the block is reached.
The code

f = open('text.txt', 'r', encoding='utf-8")
contents = f.read/()
f.close ()

print (contents)
is equivalent to the following code using the with statement:

with open('text.txt', 'r', encoding='utf-8') as f:
contents = f.read()

print (contents)

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

30

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES — ,WITH” STATEMENT

File reading: file.readlines ()

Use this technique if you want to get a Python list of strings containing the individual lines from a
file.

with open('text.txt', 'r', encoding='utf-8') as f:
lines = f.readlines /()
print (lines)

['Hello, world!\n', 'How are you?']

Note that the strings representing the individual lines contain also the newline character, \n. The
last line may or may not end with a newline char. You can get rid of them using the

str.strip () method.

for line in lines:
print (line.strip())

Hello, world!
How are you?

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

31

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES — ,WITH” STATEMENT

File reading: file.read()

Use this technique when you want to read the file contents into a single (possibly huge) string, or
when you want to specify, how many character shall be read.

with open('text.txt', 'r', encoding='utf-8') as f:
contents = f.read()
print (contents)

Hello, world!
How are you?

When called with no arguments, it reads everything from the current file cursor all the way to the
end of the file. When called with an integer argument, it reads that many characters and moves
the cursor right after the characters that were just read.

with open('text.txt', 'r', encoding='utf-8') as f:
first 10 chars = f.read(10)
the rest = f.read()

print ("The first 10 chars:", first 10 chars)

print ("The rest:"™, the rest)

The first 10 chars: Hello, wor
The rest: 1d!
How are you?
source courtesy of Petr Posik BE5Sb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

32

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES

File reading: for <line> in <file>

Use this technique when you want to do the same thing to every line from the file cursor to the
end of a file. While the previous techniques read all the content of a file at once (which may not
fit to memory), this technique reads one line at a time allowing to process large files.

with open('text.txt', 'r', encoding='utf-8') as f:
for line in f£f:
s = line.strip()
print ("The line '™ + s + "' contains " + str(len(s)) + " charac
ters.")

The line 'Hello, world!' contains 13 characters.
The line 'How are you?' contains 12 characters.

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

33

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

EXAMPLE — COLLATZ SEQUENCE

File reading: file.readline ()

This technique allows you to read a single line from a file, which is useful when you want to read
only a part of the file.

Assume that we want to read the following text file which contains several different parts. The
first line is the short description of the data. The next lines starting with # are comments. The

following part contains the data.

sswritefile data collatz 5.txt
Collatz 3n+l sequence, starting from 5.
The next number in a Collatz sequence is either 3n+l if n is odd,
or n/2 if n is even.
5
16
8

=N B

Overwriting data collatz 5.txt

source courtesy of Petr Posik BE5Sb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague 34

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

EXAMPLE — COLLATZ SEQUENCE

with open('data collatz 5.txt', 'r', encoding='utf-8') as f:
Read the description line

description = f.readline() .strip()
Read all the comment lines
comments = []

line = f.readline() .strip()

while line.startswith('#'):
comments.append(line)
line = f.readline () .strip()
data = []
data.append(int (line))
for line in f:
data.append(int (1line))

print ("Description:", description)
print ("Comments:", comments)
print ("Data:", data)

Description: Collatz 3n+l sequence, starting from 5.

Comments: ['# The next number in a Collatz sequence is either 3n+1 if
n is odd,"', '# or n/2 if n is even.']

Data: [5, 16, 8, 4, 2, 1]

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

35

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES — WRITE vs. APPEND

Writing files

Writing some text into a text file is very similar to reading it. Also, when reading, Python did not

strip the newline characters; when writing, you have to put the newlines there manually as well.

with open('topics.txt', 'w', encoding='utf-8') as f:
f.write('Computer Science\n')
f.write('Programming\n"')
f.write('Clean code\n')

!cat topics.txt

Computer Science
Programming
Clean code

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

36

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

FILES — WRITE vs. APPEND

Appending to a file

When 'w' is specified as the file mode, a new file is created if it does not exist; if it exists the file
is overwritten. We can specify the 'a' as a file mode: then we open an existing file for

appending, i.e. the new information is added to its end.

with open('topics.txt', 'a', encoding='utf-8') as f:
f.write('Software Engineering\n')

!cat topics.txt

Computer Science
Programming

Clean code

Software Engineering

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

37

CTU

EXAMPLE — READ and WRITE

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Example: Reading and writing

Suppose we have a file with 2 numbers on each line, like this:

s%writefile number pairs.txt
11

10 20
1.3 2.7

Overwriting number pairs.txt

Let us write a function that takes 2 filenames as arguments, reads the number pairs from the first

file and writes them together with its sum into the second file.

source courtesy of Petr Posik BE5b33PR 2016/2017

15/11/24 Milan Nemy, Czech Technical University in Prague

38

CTU

EXAMPLE — READ and WRITE

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def sum number pairs(infname, outfname):

"""Read data from input file, sum each row, write results to output
file.

(str, str) -> None

infname: the name of the input file containing a pair of numbers
separated by whitespace on each line
outfname: the name of the output file
mrrn
with open (infname, 'r', encoding='utf-8') as infile, \
open (outfname, 'w', encoding='utf-8') as outfile:
for pair in infile:
palir = pair.strip/()
operands = pair.split /()
total = float (operands([0]) + float(operands[l])
new line = '{} {}\n'.format (pair, total)
outfile.write(new line)

When called, this function creates the required output file containing the sums.

sum_number pairs('number pairs.txt', 'number pairs with totals.txt')
!cat number pairs with totals.txt

source courtesy of Petr Posik BE5b33PR 2016/2017

15/11/24 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

EXAMPLE — DATA FROM WEB

import urllib.request

url = "http://xml.resource.org/public/rfc/txt/rfc793.txt"
destination filename = "rfc793.txt"

urllib.request.urlretrieve(url, destination filename)

EXAMPLE: copy contents at some to a local file

The function can be used to download any kind of content
from the Internet (resources to fetch must exist)

Need of to write to the , and the file will
be created in the

(i.e. the same folder that the Python program is saved in)

Authorization necessary if behind a proxy server

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

40

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

EXAMPLE — DATA FROM WEB

import urllib.request

def retrieve page(url):

""" Retrieve the contents of a web page.
The contents is converted to a string before returning it.
my socket = urllib.request.urlopen(url)
dta = str(my_socket.readall())
my socket.close()
return dta

the text = retrieve page("http://xml.resource.org/public/rfc/txt/rfc793.txt")
print(the text)

Rather than saving the web resource to local disk, we read it directly into a
string, and return it

Opening the returns a | to end of the connection
between the program and the remote web server)
Call , , and methods on the socket object

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

41

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

15/11/24

SUMMARY

Summary

Working with paths using os.path module.
Before reading from a file or writing to it, you must first open () it.

» Always specify encoding: open (filename, mode, encoding='utf-8'").

When you are done, you must £.close () the file.
By using with, the file is closed automatically:

with open('text.txt', 'r', encoding='utf-8') as f:
contents = f.read()
... and do other things to the opened file
When you get here, the file is not opened anymore.

source http://openbookproject.net/thinkcs/python/english3e/files.html

Milan Nemy, Czech Technical University in Prague

42

http://openbookproject.net/thinkcs/python/english3e/files.html
http://openbookproject.net/thinkcs/python/english3e/files.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

REFERENCES

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under

Version date: October 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers
(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Mevyers)

Source repository is at

For offline use, download a zip file of the html or a pdf version
from

15/11/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Snímek 1
	Snímek 2: RECAP: MODULES – SCOPE
	Snímek 3: RECAP: MODULES – SCOPE
	Snímek 4: RECAP: MODULES – THE DOT OPERATOR
	Snímek 5: FILES
	Snímek 6: FILES
	Snímek 7: FILES
	Snímek 8: FILES
	Snímek 9: FILES – HANDLE
	Snímek 10: FILES
	Snímek 11: FILES
	Snímek 12: FILES – END OF FILE
	Snímek 13: FILES – READLINES vs. READ
	Snímek 14: FILES – READLINES vs. READ
	Snímek 15: FILES
	Snímek 16: FILES – BINARY
	Snímek 17: FILES – BINARY
	Snímek 18: EXAMPLE – FILE CONTENT FILTER
	Snímek 19: EXAMPLE – FILE CONTENT FILTER
	Snímek 20: EXAMPLE – FILE CONTENT FILTER
	Snímek 21: DIRECTORIES
	Snímek 22: DIRECTORIES
	Snímek 23: PATHS
	Snímek 24: PATHS
	Snímek 25: PATHS
	Snímek 26: PATHS
	Snímek 27: FILES
	Snímek 28: ENCODING
	Snímek 29: ENCODING
	Snímek 30: FILES – „WITH“ STATEMENT
	Snímek 31: FILES – „WITH“ STATEMENT
	Snímek 32: FILES – „WITH“ STATEMENT
	Snímek 33: FILES
	Snímek 34: EXAMPLE – COLLATZ SEQUENCE
	Snímek 35: EXAMPLE – COLLATZ SEQUENCE
	Snímek 36: FILES – WRITE vs. APPEND
	Snímek 37: FILES – WRITE vs. APPEND
	Snímek 38: EXAMPLE – READ and WRITE
	Snímek 39: EXAMPLE – READ and WRITE
	Snímek 40: EXAMPLE – DATA FROM WEB
	Snímek 41: EXAMPLE – DATA FROM WEB
	Snímek 42: SUMMARY
	Snímek 43: REFERENCES

