& ... PRG-PROGRAMMING ESSENTIALS

Lecture 5 — Collections, Sets, Dictionaries

Milan Nemy

Czech Technical University in Prague,
Faculty of Electrical Engineering, Dept. of Cybernetics

https://beat.ciirc.cvut.cz/people/milan-nemy/

milan.nemy@cvut.cz

https://beat.ciirc.cvut.cz/people/milan-nemy/
mailto:milan.nemy@cvut.cz

25/10/24

Everything in Python is
Python is language

The methods and variables are created on the

The objects and instances are created on the

New is created on invocation of a

function / method and references are assigned & counted

Stack frames are destroyed as soon as the

function / method returns

Mechanism to clean up the dead objects is

(algorithm used is and immediate object
removal if count == 0)

ssssss https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

Milan Nemy, Czech Technical University in Prague

https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s
https://www.youtube.com/watch?v=arxWaw-E8QQ&t=1s

CTU

RECAP: LISTS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> my_str‘%ng = "TE%T:: »> my_].ist = I:u-l-llJ uEuJ "S", ||T||]
>>> my _string[2] = "X 555 m list[Z] = "Y"
Traceback (most recent call last): y_ X .

File "<interactive input>", line 1, in <module> >>> my_list

TypeError: 'str' object does not support item assignment ['T', 'E', 'X', 'T']

e Lists are (we can change their elements)

e Strings are (we cannot change their elements)

e Use (indexes in between characters / items)

source http://openbookproject.net/thinkcs/python/english3e/lists.html

25/10/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

RECAP: STRINGS vs. LISTS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

St"ngs a = "banana" a—, >>> ais b
_om T "banana”’

b = "banana b — True
Lists »> a = [1, 2, 3]

>»> b = [1, 2, 3]

>»> a == b a—[1, 2, 3]

True >

>>»> a is b - (i, 2, 3]

False

Variables a and b refer to string object with letters "banana”
Use is operator or id function to find out the
Strings are

Python optimizes resources by making two names that refer to the same
string value refer to the same object

Not the case of lists: a and b have the same value (content) but do not
refer to the same object

source http://openbookproject.net/thinkcs/python/english3e/lists.html

25/10/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

RECAP: LISTS - ALIASING, CLONING

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

SO a >>> b[@] = 5

>>>b?a \[1 2, 3) os 3

>»> ais b b—" o4y (5. 2, 3]

True 7

et a2, 31 v obrer - s
>>> a

>> b b—s(1, 2, 3) L 3. 3]

[1, 2, 3] > 2,

If we assign one variable to another, both variables refer to the same
object
The we say that it is (changes

made with one alias affect the other)

Recommendation is to
If need to modify a list and keep a copy of the original use the

(taking any slice of a creates a new list)

source http://openbookproject.net/thinkcs/python/english3e/lists.html

25/10/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

RECAP: LIST PARAMETERS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def double_stuff(a_list):
""" Ogverwrite each element in a List with double 1its value.
for (idx, val) in enumerate(a_list):
a list[idx] = 2 * val

things = [2, 5, 9] .
double_stuff(things) __main__ |a list

print(things) T~ [2.5, 9]
double_stuff [things

[4, 10, 18]

* Passing a passes a to the list,
of the list

* So creates an

(one of the most common sources of error)

source http://openbookproject.net/thinkcs/python/english3e/lists.html

25/10/24 Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/lists.html
http://openbookproject.net/thinkcs/python/english3e/lists.html

CTU

sy RECAP:LIST PARAMETERS

UNIVERSITY
IN PRAGUE

def double stuff(a_list):
""" Return a new List which contains
doubles of the elements in a _Llist.

new_list = []

for value in a_list:
new _elem = 2 * value for (idx, val) in enumerate(a_list):
new _list.append(new_elem) a_listlidx] = 2 * val

def double stuff(a_list):

return new list

Concept: VS.
Pure function does not produce !

Pure function communicates with the calling program

(it does not modify) and a

Do not alter the input parameters unless really necessary
Programs that use pure functions are and

than programs that use modifiers

Source by Tomas Svoboda PRG 2016/2017

25/10/24 Milan Nemy, Czech Technical University in Prague

""" Overwrite each element in a_list with double its value. """

RECAP: FUNCTIONS PRODUCING LISTS

functions that produce lists

- def fcn(par):
- initialize result as empty list
- loop

- create a new element

- add to the result

« return result

25/10/24 Milan Nemy, Czech Technical University in Prague

SEQUENCE TYPES

e Sequences of items support the following operations:

membership operator

querying for size / number of items
indexing and slicing

are iterables

. immutable ordered sequence of characters
: immutable ordered sequence of items of any data type
: mutable ordered sequence of items of any data type

25/10/24 Milan Nemy, Czech Technical University in Prague

25/10/24

SETTYPES

* Set types support the following operations:

membership operator

querying for size

are iterable

set operations (comparisons, union, intersection, subset)

: mutable unordered collection of unique items of any type

: immutable unordered collection of unigue items
of any data type

Milan Nemy, Czech Technical University in Prague

10

SETTYPES

* Set types when iterated over provide items in
an

* Only may be added to a set:

* Immutable data types are (hash value does not
change, objects compare for equality to other objects: int,
float, str, tuple, frozenset)

e Mutable values are (usually) not hashable (list, dict, set)

25/10/24 Milan Nemy, Czech Technical University in Prague

11

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

HASHABLE - THE DEFINITION

An object is if it it
needs a hash () method and to be compared to other objects it needs
an_eq_ () method

Hashable objects which compare equal must have the same hash value

Hashability makes an object and , because
these data structures use the hash value internally

All of Python’s ;
mutable containers (such as lists or dictionaries) are not hashable

Objects which are . They all
compare unequal (except with themselves) and their hash value is derived from

their id()

source https://docs.python.org/3/glossary.html

Milan Nemy, Czech Technical University in Prague

12

https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://docs.python.org/3/library/functions.html#id

CTU

SET USAGE

Creating a set of letters from a sequence of letters:

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

s = set('abracadabra')
S
{1a!’ 1b!’ 'C', ld', Ir!}

Iterating over set items:

for 1 in s:
print (i, end='"' ')

dcabr

Membership checking:
'a' in s, 'z' in s

(True, False)

source courtesy of Petr Posik BE5b33PR 2016/2017

25/10/24 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

SET USAGE

Adding an item to a set:

s.add('z")
S

{'a'; 'b', 'C', ld'; lr'; IZ!}
Removing an item from a set:

s.discard('a') # Nothing happens if 'a' not in s

s.remove ('b') # Raises KeyError if 'b' not in s
S

{'C', 'd', 'r', lZ'}

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

14

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

SET OPERATIONS

set ('programming'), set('essentials')

({lat, lgt, lit’ lmt’ lnt’ lot’ lpt’ lrt}, {'alf teI’ liI’ llI’ lnI’ ISI’ Itl})
Union:

set ('programming') | set('essentials')

{1a|" 1e|" 1g|" Iil" Ill" Iml" Inl" IO', Ipl" Irl" IS', Itl'}
Intersection:

set ('programming') & set('essentials')

Difference:

set ('programming') - set('essentials')

{Tg—f’ Tmf’ Tof’ lpf’ lrf}
Symmetric difference: (Not in both sets)

A

set ('programming') set ('essentials')

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

15

CTU

SET OPERATIONS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

Set "comparisons"

Are two sets disjoint? (l.e., is their intersection empty?)

set ('programming') .isdisjoint (set ('essentials'))

False

Is one subset of another?

set ('pro') <= set('programming') # Or, set('pro').issubset (set('programming'))

True

Is one superset of another?

set ('pro') >= set('programming') # Or, set('pro').issuperset (set ('programming'))

False

source courtesy of Petr Posik BE5Sb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

16

CTU

SET OPERATIONS

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Set example: unique items

Having a list of (e.g.) words, how do we get a list of unique words?

words = 'three one two one two one'.split()
print (words)

['"three', 'one', 'two', 'one', 'two', 'one']
unique words = list(set (words))

print (unique_ words)

["three', 'two', 'one']

Note, however, that the new list does not (in general) preserve the order of words in the original list.

source courtesy of Petr Posik BE5Sb33PR 2016/2017

25/10/24 Milan Nemy, Czech Technical University in Prague

CTU

ey SET OPERATIONS

UNIVERSITY
IN PRAGUE

25/10/24

Set example: eliminate unwanted items (1)

Having a list of file names, how do we get rid of some of them (! prediction. txt, !truth.txt)?

orig filenames = 'fl f2 !prediction.txt f£f3 fd.ext !truth.txt £5'.split()
filenames = set(orig filenames)

print (filenames)

for fname in {'!truth.txt', 'l!prediction.txt'}:

filenames.discard (fname)
print (filenames)

{'f4d.ext', 'f£f1', '£3', 'f2', '"lprediction.txt', '!truth.txt', '£5'}
{'fd.ext', 'f1', '£3', 'f2', 'ltruth.txt', '£5'}
{'fd.ext', '£1', '£3', 'f2', 'f£5'}

source courtesy of Petr Posik BE5Sb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

18

CTU

ey SET OPERATIONS

UNIVERSITY
IN PRAGUE

25/10/24

Set example: eliminate unwanted items (2)

Having a list of file names, how do we get rid of some of them (! prediction.txt, !truth.txt)?

filenames = set(orig filenames)
print (filenames)

{("f4.ext', 'f1', '£3', 'f2', 'lIprediction.txt', '!truth.txt', 'f5'}

filenames = filenames - {''!'truth.txt', 'l!lprediction.txt'}
filenames

{'£1', 'f£2', '£3', 'f4.ext', '£5'}

source courtesy of Petr Posik BE5Sb33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

19

CTU

MAPPING TYPES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> inventory = {"apples": 430, "bananas": 312, "oranges": 525, "pears"

>>> print(inventory)
{'pears': 217, 'apples': 430, 'oranges': 525, 'bananas': 312}

A mapping type is an

They support:
* membership operator
* querying for size / number of items
* areiterable

Only (i.e.) objects can be used as

Each key's associated value may be of

source courtesy of Petr Posik BE5b33PR 2016/2017

25/10/24 Milan Nemy, Czech Technical University in Prague

: 217}

20

25/10/24

DICTIONARIES

>>> eng2sp = {}
>>> eng2sp["one"] = "uno"
>>> eng2sp["two"] = "dos"

>>> print(eng2sp)
{lltw01!= lldosll’ llonel!= llunoll}

Strings, lists, and tuples are sequence types using integers as
indices to access the values they contain within them

Dictionaries are Python’s built-in
They map) , to that can be

any type

EXAMPLE: Create a dictionary to translate English words into

Spanish (the keys are strings). One way to create a dictionary

is to start with the empty dictionary and add key : value pairs.
The is denoted

source courtesy of Petr Posik BE5b33PR 2016/2017

Milan Nemy, Czech Technical University in Prague

21

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

The order of the pairs may not be what was expected. Python uses complex algorithms, designed for very fast

access, to determine where the key:value pairs are stored in a dictionary. For our purposes we can think of this
ordering as unpredictable.

You also might wonder why we use dictionaries at all when the same concept of mapping a key to a value could be
implemented using a list of tuples:

>>> {"apples": 430, "bananas": 312, "oranges": 525, "pears": 217}
{'pears': 217, 'apples': 430, 'oranges': 525, 'bananas': 312}

>>> [('apples', 430), ('bananas’', 312), ('oranges', 525), ('pears', 217)]
[('apples', 430), ('bananas', 312), ('oranges', 525), ('pears', 217)]

The reason is dictionaries are very fast, implemented using a technique called hashing, which allows us to access a
value very quickly. By contrast, the list of tuples implementation is slow. If we wanted to find a value associated with
a key, we would have to iterate over every tuple, checking the Oth element. What if the key wasn’t even in the list?
We would have to get to the end of it to find out.

25/10/24

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

Milan Nemy, Czech Technical University in Prague

22

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> eng2sp = {"one": "uno", "two": "dos", "three": "tres"}

>>> print(eng2sp["two"])
"dos’

To create a dictionary is to provide a list of using the same
syntax as the previous output
Order of pairs does not matter — the values in a dictionary are accessed

with keys, not with indices,
Key is used to look up the corresponding value:

EXAMPLE: the key "two" yields the value "dos"

Lists, tuples, and strings have been called sequences, because their items
occur in order

The dictionary is compound type that is

()

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25/10/24 Milan Nemy, Czech Technical University in Prague 23

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Python Console
/opt/local/bin/python2.7 /Applications/PyCharm.app/Contel Special Variables
keys = ['a', 'b', 'c'l]
values = []
my_dict = dict(zip(keys, values))
{my_diCt) : Ty Ial Il 1Al
'c': 3, 'b': 2} keys = <type 'list'>: ['a’, 'b’, 'c']
my_dict = {'a" 1, 'c" 3, 'b" 2}
8l 'c' (4555205408) 3
B 'b' (4555203808) 2
8 _len__= 3
B 'a' (4555203768) = 1
values = <type 'list'>: [1, 2, 3]

* Keys and values can be defined as separate lists
(order matters in this case!)

* Lists can be paired using

* Once paired, a dictionary can be created using

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25/10/24 Milan Nemy, Czech Technical University in Prague 24

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Creating a dictionary:

course = {'id': 'BESB33PRG', 'name': 'Programming essentials', 'capacity': 25}

course?2 = dict(id="'BE5SB33PRG', name='Programming essentials', capacity=25)

course3 = dict([('id', 'BE5SB33PRG'), ('name', 'Programming essentials'), ('capacity', 25)1)
coursed = dict(zip(('id', 'name', 'capacity'), ('BE5SB33PRG', 'Programming essentials’', 25)))

All the above methods create a dictionary with the same contents:

course

{'capacity': 25, 'id': 'BESB33PRG', 'nmame': 'Programming essentials'}
course == courseZ == course3 == coursed

True

Testing membership in a dictionary (the tested object is assumed to be a key):

'id' in course, 'BESB33PRG' in course

(True, False)

25/10/24 Milan Nemy, Czech Technical University in Prague

CTU

e DICTIONARIES

UNIVERSITY
IN PRAGUE

Querying a dictionary for a value:

course['id"']

'BESB33PRG'

Getting the lists of keys, values and key-value pairs:

print (list (course.keys()))
print (list (course.values()))
print (list (course.items ()))

['mame', 'capacity', 'id']
['Programming essentials', 25, 'BESB33PRG']

[("name', 'Programming essentials'), ('capacity', 25), ('id', 'BESB33PRG')]

Adding new key-value pairs:

course['lecturer'] = 'Svoboda'
print (course)
{'lecturer': 'Svoboda', 'name':

25/10/24 Milan Nemy, Czech Technical University in Prague

'Programming essentials', 'capacity': 25, 'id':

'BE5B33PRG' }

26

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Replacing a value for an existing key:

course['lecturer'] = '"Posik'
print (course)

{"lecturer': 'Posik', 'name': 'Procgramming essentials', 'capacity': 25, 'id': 'BES5B33PRG'}
Removing an item from a dictionary:

del course['lecturer']
print (course)

{'"name': 'Programming essentials', 'capacity': 25, 'id': 'BESB33PRG'}

25/10/24 Milan Nemy, Czech Technical University in Prague

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Iterating over keys:
for key in course:

print (key, end=' | ')
name | capacity | id |

or

for key in course.keys():
print (key, end=' | ')

name | capacity | id |

Iterating over values:

for val in course.values|():
print (val, end=' | ')

Programming essentials | 25 | BES5B33PRG

25/10/24 Milan Nemy, Czech Technical University in Prague

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Iterating over key-value pairs:

for item in course.items () :

print (item[0], '=', item[1l], end=" | ')
name = Programming essentials | capacity = 25 | id = BESB33PRG |
or, in a better way:
for key, val in course.items|() :

print(key, '=', wval, end=' | ")
name = Programming essentials | capacity = 25 | id = BESB33PRG |

25/10/24 Milan Nemy, Czech Technical University in Prague

29

25/10/24

DICTIONARIES - GET METHOD

method

Returns the , if the key exists
in the dictionary

Returns if key is and
IS given

Returns a , if key does not exist in the dictionary
and the

Milan Nemy, Czech Technical University in Prague

30

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

DICTIONARIES

print (course['id'])

BE5B33PRG

print (course.get ('id"'))

BE5B33PRG

Querying a value for a non-existent key:

course

{'capacity': 25, 'id':

#print (course['univ'])

print (course.get ('univ'

None

print (course.get ("univ'

CTU in Prague

"BES5B33PRG', 'name': 'Programming essentials'}

Raises KeyError

))

; '"CTU in Prague'))

Milan Nemy, Czech Technical University in Prague

31

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Creating a Counter

from collections import Counter

C Counter ()

Counter ('abracadabra')

Counter ({'red': 4, 'blue': 2})
Counter (cats=4, dogs=8)

new, empty counter

new counter from an iterable
new counter from a mapplng
new counter from keyword args

VIR VIRV R

C
C
c

S Sk e S

Counter is a special kind of a (dictionary)
Collection of which are stored ,and

their are stored
Values are counts, i.e. any integers, including negative
Defined in

25/10/24 Milan Nemy, Czech Technical University in Prague

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

DICTIONARIES

Accessing Counter elements

» Use indexing as for dicts.

» For non-existing keys, Counter returns 0, instead of raising KeyError.

c = Counter(['eggs', 'ham'])
print(c)

Counter ({'ham': 1, 'eggs': 1})

print(c['eggs'])
print (c['bacon'])

1
0

Counter.most common ()

c = Counter ('abracadabra')

@

Counter({'a': 5, 'b': 2, 'c': 1, 'd': 1, 'r': 2})
c.most_common(B)

((ta', 35), ('b', 2), ('r', 2)]

Milan Nemy, Czech Technical University in Prague

33

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Adding and subtracting counters

DICTIONARIES

cl = Counter ('abracadabra')
c2 = Counter ('simsalabim')

print (cl)
print (c2)

Counter({'a': 5,
Counter({'a': 2,
print (cl + c2)

Counter({'a': 7,

print (cl - c2)

Counter({'a': 3,

Note, there are no elements with negative values (that could be expected for s, i, m, ...).

25/10/24

1b!:
1ml .

ibI:

1r!:

2,

'r': 2, 'd':
ll" 2, !Sl
lli 2Ir lr!
'c': 1, 'b':

1,

ICT:
ll!:

ldl':

1})

1})

lbl:

1})

Milan Nemy, Czech Technical University in Prague

34

CTU

DICTIONARIES

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

25/10/24

Counter.update () and Counter.subtract ()

c = Counter ()

cl = Counter ('abrakadabra')

cZ2 = Counter ('avada kedavra')
c.subtract (cl) # Negative counts
print (cl)

print (c)

Counter({'a': 5, 'b': 2, 'r': 2, 'd': 1, 'k': 1})
Counter({'k': -1, '4': -1, 'r': -2, 'b': -2, 'a': -5})

c.update (c2)

print (c)

Counter({'v': 2, ' '+ 1, 'e': 1, '4d': 1, 'k': 0, 'a': 0, 'r': -1, 'b': -=-2})
c.update (cl)

c.subtract (c2)
print (c)

Counter({'v': O, " ': O, 'r': 0, 'k': 0, 'e': Q, 'd': 0, 'b': 0, 'a': 0})

Milan Nemy, Czech Technical University in Prague

35

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

As in the case of lists, because
need to be aware of (1)

Aliasing: whenever two variables refer to the same object,
changes to one affect the other

If we want to modify a dictionary and keep a copy of the
original,

EXAMPLE: opposites is a dictionary that contains pairs of
opposites

>>> opposites = {"up": "down", "right": "wrong", "yes": "no"}
>>> alias = opposites
>>> copy = opposites.copy() # Shallow copy

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25/10/24 Milan Nemy, Czech Technical University in Prague

36

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

DICTIONARIES

Alias and opposites refer to the same object;

Copy refers to a fresh copy of the same dictionary.

If alias is modified, opposites is

>>> alias["right"] = "left"
>>> opposites["right"]
'left'

If copy is modified, opposites is

>>> copy["right"] = "privilege"
>>> opposites["right"]
"left’

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

Milan Nemy, Czech Technical University in Prague

37

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

DICTIONARIES

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

>>> letter counts = {}
>>> for letter in "Mississippi":
oo letter counts[letter] = letter counts.get(letter, 0) + 1

>>> letter counts
{'M': 1, 's': 4, 'p': 2, 'i': 4}

e EXAMPLE: Function that of a letter in a
string using a frequency table of the letters in the string (how many times

each letter appears)

 Compressing a text file: because different letters appear with different
frequencies, we can compress a file by using shorter codes for common

letters and longer codes for letters that appear less frequently.
* Dictionary ideal for frequency tables

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25/10/24 Milan Nemy, Czech Technical University in Prague 38

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

DICTIONARIES

>>> letter items = list(letter counts.items())
>>> letter_ items.sort()
>>> print(letter items)

25/10/24

[(TM1F 1)!’ (li'f 4)l' ('p'f 2)!’ (1Slf 4)]

ALGORITHM:
Start with an
For each letter in the string, find the (possibly
zero) and
At the end the dictionary contains

To display the frequency table in alphabetical order use
NOTE: in the first line the type conversion function list is called
to get from items into a list (needed to use sort method)

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

Milan Nemy, Czech Technical University in Prague

39

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

LINEAR SEARCH ALGORITHM

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
test(search linear(friends, "Zoe") == 1)

test(search linear(friends, "Joe") == 0)

test(search linear(friends, "Paris'") == 6)

test(search linear(friends, "Bill") == -1)

def search linear(xs, target):
""" Find and return the index of target in sequence Xxs
for (i, v) in enumerate(xs):
if v == target:
return i
return -1

LU

e EXAMPLE: — to find the index where a
specific item occurs within in a list of items then return the

index of the item if it is found or return -1 if the item doesn’t
occur in the list

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25/10/24 Milan Nemy, Czech Technical University in Prague

40

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

LINEAR SEARCH ALGORITHM

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

def search linear(xs, target):
" Find and return the index of target in sequence xs ""'
for (i, v) in enumerate(xs):
if v == target:
return i
return -1

Searching all items in a sequence is called

Check whether is called a
Count probes as a measure of how the algorithmis

(indication of how long the algorithm will take to execute)

Linear searching is characterized by the fact that the number
of probes needed to find some target depends directly on the
length of the list

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

25/10/24 Milan Nemy, Czech Technical University in Prague 41

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

LINEAR SEARCH ALGORITHM

def search linear(xs, target):

""" Find and return the index of target in sequence xs """
for (i, v) in enumerate(xs):
if v == target:
return i
return -1

Test every item in the list from first to last such that the result is returned
by the function as it is found ()

NEGATIVE: If searching for a target that is not present in the list, then go all

the way to the end before we can return the negative value

Search has performance
Interested in the scalability of our algorithms
(how to solve this for million or ten million of items?)

source http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

Milan Nemy, Czech Technical University in Prague

42

http://openbookproject.net/thinkcs/python/english3e/dictionaries.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

25/10/24

This lecture re-uses selected parts of the OPEN BOOK PROJECT

available under

Version date: October 2012
by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris
Meyers)

Source repository is at

For offline use, download a zip file of the html or a pdf version
from

Milan Nemy, Czech Technical University in Prague

http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/
http://openbookproject.net/thinkcs/python/english3e/index.html
http://openbookproject.net/thinkcs/python/english3e/copyright.html
https://www.gnu.org/licenses/fdl-1.3.en.html
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

	Snímek 1
	Snímek 2: RECAP: MORE ABOUT PYTHON
	Snímek 3: RECAP: LISTS
	Snímek 4: RECAP: STRINGS vs. LISTS
	Snímek 5: RECAP: LISTS – ALIASING, CLONING
	Snímek 6: RECAP: LIST PARAMETERS
	Snímek 7: RECAP: LIST PARAMETERS
	Snímek 8: RECAP: FUNCTIONS PRODUCING LISTS
	Snímek 9: SEQUENCE TYPES
	Snímek 10: SET TYPES
	Snímek 11: SET TYPES
	Snímek 12: HASHABLE – THE DEFINITION
	Snímek 13: SET USAGE
	Snímek 14: SET USAGE
	Snímek 15: SET OPERATIONS
	Snímek 16: SET OPERATIONS
	Snímek 17: SET OPERATIONS
	Snímek 18: SET OPERATIONS
	Snímek 19: SET OPERATIONS
	Snímek 20: MAPPING TYPES
	Snímek 21: DICTIONARIES
	Snímek 22: DICTIONARIES
	Snímek 23: DICTIONARIES
	Snímek 24: DICTIONARIES
	Snímek 25: DICTIONARIES
	Snímek 26: DICTIONARIES
	Snímek 27: DICTIONARIES
	Snímek 28: DICTIONARIES
	Snímek 29: DICTIONARIES
	Snímek 30: DICTIONARIES – GET METHOD
	Snímek 31: DICTIONARIES
	Snímek 32: DICTIONARIES
	Snímek 33: DICTIONARIES
	Snímek 34: DICTIONARIES
	Snímek 35: DICTIONARIES
	Snímek 36: DICTIONARIES
	Snímek 37: DICTIONARIES
	Snímek 38: DICTIONARIES
	Snímek 39: DICTIONARIES
	Snímek 40: LINEAR SEARCH ALGORITHM
	Snímek 41: LINEAR SEARCH ALGORITHM
	Snímek 42: LINEAR SEARCH ALGORITHM
	Snímek 43

