STATISTICAL MACHINE LEARNING (WS2024/25) HOMEWORK: EM ALGORITHM FOR PRIOR SHIFT ADJUSTMENT

Assignment (5 points) Consider a training data $\mathcal{T}^m = ((x^i, y^i) \in \mathcal{X} \times \mathcal{Y} \mid i = 1, ..., m)$, where the samples are i.i.d. and drawn from the distribution $p_{tr}(x, y) = p(x \mid y) p_{tr}(y)$. From this training data, you have obtained estimates of:

- 1. The training prior: $\hat{p}_{tr}(y)$,
- 2. The training posterior: $\hat{p}_{tr}(y \mid x)$.

At deployment, the data distribution changes due to a shift in the prior. The deployment data is drawn from the distribution $p_{\rm de}(x,y)=p(x\mid y)\,p_{\rm de}(y)$, where $p_{\rm de}(y)\neq p_{\rm tr}(y)$. You are provided with an unlabeled dataset $\mathcal{S}^n=(x^i\in\mathcal{X}\mid i=1,\ldots,n)$, where the samples are i.i.d. and drawn from the deployment marginal distribution $p_{\rm de}(x)=\sum_{y\in\mathcal{Y}}p_{\rm de}(x,y)$.

- a) Estimating Deployment Prior with EM. Implement the Expectation-Maximization (EM) algorithm to estimate the deployment prior $p_{de}(y)$ using the unlabeled deployment samples S^n . Use the training posterior $\hat{p}_{tr}(y \mid x)$ in your implementation.
- b) Plugin Bayes Classifier for Deployment Data. Given:
 - The estimated deployment prior $\hat{p}_{de}(y)$,
 - The training posterior $\hat{p}_{tr}(y \mid x)$,
 - The training prior $\hat{p}_{tr}(y)$,
 - A loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$,

implement a plugin Bayes classifier:

$$\hat{h}(x) = \underset{y \in \mathcal{Y}}{\arg\min} \sum_{y' \in \mathcal{Y}} \hat{p}_{de}(y' \mid x) \ell(y, y') , \qquad (1)$$

where the deployment posterior $\hat{p}_{de}(y \mid x)$ accounts for the prior shift and is adapted from the training posterior. Ensure your implementation can efficiently handle deployment data.