
1 Motivation

Motivation
There are applications for which it is critical to establish certain availability, consistency,

performance etc.

� Banking

� Web mail

� KOS, CourseWare (to some degree)

Questions

� How can we define/measure such non-functional application require-
ments?

� What techniques/tools can we use to provide such applications?

2 Core concepts

Understanding Core Concepts

� Mission-critical application is an application that is essential to the survival
of a business or an organization, i.e., failure or interruption of the application
significantly impacts business operations.

� Important properties of such an application

– How well can it be adapted to handle bigger amounts of work?

* scalability

– How well does it provide useful resources over time period?

* availability

– What is the rate of processing of the specified workload over the specified time
period?

* performance

Scalability of an application

� Scalability is a property of an application which defines

– how easily it can be expanded to satisfy increased demand for network,
processing, database access, file-system resources etc.

– how well it handles the increased amount of work

1



Figure 1: Virtualization Example – vertical scaling of hosting services by increasing
number of processors, the amount of main memory to host more virtual servers.

Figure 2: Clustering Example – horizontal scaling of SOA systems/web services by adding
more servers nodes to a load-balanced network.

� There are 2 ways to scale an application

– vertically (scaling up) – expanding by adding processor units, main memory,
storage or network interfaces to a node.

– horizontally (scaling out) – expanding by adding new nodes with identical
functionality to existing ones.

Vertical Scaling Example

Horizontal Scaling Example

High-availability of an application

� Uptime (downtime) is time during which application is running (not running).

2



Availability Downtime per year Downtime per week Downtime per day

90% (”one nine”) 36.5 days 16.8 hours 2.4 hours

95% 18.25 days 8.4 hours 1.2 hours

97% 10.96 days 5.04 hours 43.2 minutes

98% 7.30 days 3.36 hours 28.8 minutes

99% (”two nines”) 3.65 days 1.68 hours 14.4 minutes

99.9% (”three nines”) 8.76 hours 10.1 minutes 1.44 minutes

99.99% (”four nines”) 52.56 minutes 1.01 minutes 8.66 seconds

99.999% (”five nines”) 5.26 minutes 6.05 seconds 864.3 milliseconds

99.9999% (”six nines”) 31.5 seconds 604.8 milliseconds 86.4 milliseconds

99.99999% (”seven nines”) 3.15 seconds 60.48 milliseconds 8.64 milliseconds

Table 1: Measuring Availability – vendors typically define availability as given number of
“nines”.

� Availability is defined as the percentage of time an application provides its
expected functionality A = (1− tunplanned downtime

tuptime
) ∗ 100

� Note, that uptime and availability are different concepts.

� High-availability characterizes applications that are obliged to have availability
close to 100%.

Measuring availability

SLA/OLA

Service Level Agreement (SLA)
defines obligations towards the (external) client in delivering and using an application

For example:

� minimal/target levels of availability

� timing of reaction (reply to client, fix; based on urgency; e.g. issue A, 1 hour
reaction, 8 hours fix)

� maintenance windows

� performance and metrics for its evaluation

� billing

� consequences of not meeting obligations

Operational Level Agreement (OLA)
defines similar obligations towards the internal departments

3



3 Techniques for Performance Optimization

3.1 Caching

Caching
Caching is a technique for sharing data among multiple data consumers. It is useful

for data that are expensive to compute or fetch or do not change often.

� implemented by index tables where key is used to retrieve cached entry (datum)

� query for datum using cache can lead to cache hit or cache miss

� Cache is transparent for its client

Cache Types

� application cache

– implicit vs. explicit application caching – with little/no participation of a
programmer (e.g. Ehcache) vs. using caching API (e.g. Memcached)

� web cache

– client side (browser) vs. server side caching

– web-accelerators – operates on behalf of the server of origin (e.g. content
distribution networks, Akamai)

– proxy caches – serve requests to a group of client accessing same resources.
Used for content filtering and reducing bandwidth usage (e.g. Apache)

� distributed cache – implemented across multiple systems that serves requests
for multiple customers and from multiple resources (e.g. distributed web cache
Akamai, distributed application cache Memcached)

Cache Strategies

Read-through Data are read through cache, if miss, data are read from storage and put
into cache

Write-through Data are written through cache, i.e., update occurs synchronously in
cache and in data storage

Write-behind Data are written into cache, update in storage occurs asynchronously after
configured delay/when another update to the data occurs

Write-allocate/No-Write-Allocate Writing data allocates (does not allocate) cache as
well

Eviction

4



Figure 3: A write-through cache with no-write allocation taken from https://en.
wikipedia.org/wiki/Cache_(computing)

� LRU – replace least recently used item

� FIFO (TTL) – replace oldest item (regardless of access frequency)

� Random, Round Robin – delete at random/computed position

Write-through with No-write Allocation

Write-behind Cache with Write Allocation

3.2 Pools

Pools

� Thread pools

� Connection pools, FISH-985-rwlockdatabase – show, how amount of connection
affects performance (Resources, JDBC, JDBC Connection Pools, tasksPool, Pool
Settings)

� Small poll and short MaxWait Time = PoolingException: In-use connections
equal max-pool-size and expired max-wait-time. Cannot allocate
more connections.

5



Figure 4: A write-behind cache with write allocation taken from https://en.
wikipedia.org/wiki/Cache_(computing)

3.3 Load Balancing

Load Balancing

� Response time defines the amount of time it takes a system to process a request
after it has received it

� Latency is often used to refer to the response time lowered by the processing time
of the request on the server

� Throughput defines the number of transactions per second that an application
can handle

� Load balancing is a technique for minimizing response time and maximizing
throughput by delegating requests among multiple nodes

� Load balancer is responsible for routing requests to available nodes based on
scheduling rules

Load Balancing

� Distributes client requests or network load efficiently across multiple servers

� Hardware vs Software load balancers

� Load balancing strategies:

Round Robin distribute requests to servers sequentially

Least connections incoming requests are routed to servers with the least load
(factoring in server strength)

IP hash IP address of the request client determines target server

6



Figure 5: Load Balancer using the Round Robin algorithm.

Figure 6: Sticky Load Balancer.

Round Robin Load Balancer

Persistent/Sticky Session
Stateful applications with server-side sessions require requests from one session to go

to the same server.

Common Features of Load Balancers

� asymmetric load distribution – different loads are assigned to different nodes

� priority activation – if the load gets too high, some standby nodes are activated

� dynamic configuration – add/remove servers in server pool quickly at runtime

� content filtering – modifies traffic on the way through

� firewall – deciding whether traffic might pass through an interface or not based on
security rules

3.4 Clustering

Clustering

7



Figure 7: Load-Balancing Cluster (Active/Active)

Figure 8: High-Availability Cluster (Active/Passive). It uses “heartbeat” to detect if
nodes are ready and routing mechanism to switch traffic if a node fails.

� Cluster is group of computer systems that work together in a form that appears
from the user perspective as a single system

� Load-balancing cluster (Active/Active) – distributes load to redundant nodes, while
all nodes are active at the same time offering full-service capabilities

� High-availability cluster (Active/Passive) – improves service availability by redun-
dant nodes eliminating single points of failures

Load-Balancing Cluster

High-Availability Cluster

Principles to Achieve High Availability

8



� Elimination of single points of failure – adding redundancy so failure of a component
does not cause failure of the entire application

� Reliable crossover – ability to switch to from failing node to new node without
loosing

� Detection of failures as they occur – failing node should maintain activity, not
user’s attention.

Docker + Kubernetes

� Docker allows simple and reproducible node setup

– same image, central repository

– containers are configured

– docker-compose allows bind several services (Java server, nginx, PostgreSQL)

� Kubernetes provides cluster, runs services on multiple nodes

– configuration

– load balancing

– monitoring, fault tolerance (self healing) – restarts services

– automatic cluster sizing

3.5 Cloud Computing

Cloud Computing

� Keeping a reliable environment with well-configured high-availability is hard!

� Cloud Computing is a type of internet-based computing where applications are
running on distributed resources owned and operated by a third-party like Amazon.

� Pay-as-you-go billing

� Service models within cloud computing :

Infrastructure as a Service (IaaS) use provided infrastructure – virtual machines,
servers, load balancers, network, e.g., Amazon EC2

Platform as a Service (PaaS) using provider’s services, libraries, tools with con-
trol over deployed application – execution runtime, database, web-server,
development, e.g. Google AppEngine, MS Azure

Software as a Service (SaaS) using providers application with limited control
over the application, e.g., Office 365, email

On Premise vs IaaS vs PaaS vs SaaS

9



Figure 9: Cloud computing models. Source: http://robertgreiner.com/2014/
03/windows-azure-iaas-paas-saas-overview/

System performance testing

� Performance refers to application throughput with specified workload and period
of time.

� Performance specifications are typically documented in SLA document

� Troubleshooting performance issues requires multiple types of testing such as

– endurance testing – identifies resource leaks under the continuous, expected
load

– load testing – show application behavior under a specific load

– spike testing – shows application behaviour under dramatic changes in load

– stress testing – identifies the breaking point for the application under dramatic
load changes for extended periods of time

4 Tools

Caching

� Java specification JSR 107 – JCache

� Spring caching support older, it has its own set of cache-related annotations

� Application cache implementations – Ehcache, Memcached

10



Spring JSR-107

@Cacheable @CacheResult
@CachePut @CachePut
@CacheEvict @CacheRemove
@CacheEvict(allEntries=true) @CacheRemoveAll
@CacheConfig @CacheDefaults

Table 2: Alternative annotations within Spring and JSR-107

4.1 Monitoring Tools

JConsole

� GUI-based Java monitoring tool,

� JMX compliant,

� Allows connection to local or remote (if configured) processes,

� Part of the JDK.

JavaMelody

� Very simple to implement (few lines in web.xml, few lines in pom.xml)

� Navigate to /monitoring and enjoy!

� LIVE DEMO (at least PDF)

– Records data for last year, older data is sumarized, old data removed

– memory, sessions, threads, CPU, disk space, network bandwidth, SQL traffic,
JMX, timing statistics of requests...

– actions: invalidate sessions, perform garbage collection, memory dump

11



Prometheus + Grafana

� Ready software, frequently used in production

� LIVE DEMO

� Prometheus collects and saves metrics

– just provide data in the right format

� Grafana makes nice dashboards, graphs

– make your own dashboard drag&drop

– download some ready dashboard via “Import via grafana.com”

Tools for critical-mission applications

� Netbeans Profiler, IntelliJ IDEA Profiler

� JConsole, VisualVM, Java Flight Recorder

� Apache JMeter or Gatling (performance testing by scripts)

� Apache HTTP Server, nginx, IIS (caching, high availability, load balancing)

� EC2 Elastic Load Balancing

5 Demos

Demo – (J)Cache

� CDI + source, @CacheResult, @CacheRemoveAll

� Controlling Cache directly + source, @Inject javax.cache.Cache

� REST + source + demo, @CacheResult+@CacheKey, @CachePut+@CacheValue,
@CacheRemove

� Sources: https://github.com/payara/Payara-Examples/tree/master/javaee/jcache

Demo – Monitoring

Load testing

� SampleApplication with slow service

� JConsole, VisualVM

� Prometheus + Graphana

12



� Using wrk as a tester (try also JMeter)

JConsole, VisualVM

� Connect to server with JConsole, see what is going on there

� Connect to server with VisualVM, see what is going on there

The End

Thank You

Resources

1. https://www.nginx.com/resources/glossary/load-balancing/

2. https://aws.amazon.com/caching/

3. https://docs.oracle.com/cd/E13924_01/coh.340/e13819/readthrough.
htm

4. https://docs.spring.io/spring/docs/current/spring-framework-reference/
integration.html\#cache

5. https://visualvm.github.io/documentation.html,

6. https://jmeter.apache.org/

13


