
Figure 1: From https://apim.docs.wso2.com/en/4.0.0/get-started/
apim-architecture/

1 REST – Management

WSO2

� API Management (versioning, testing, thoughput, customization)

� Integration between many apps (independent vendors)

� Customer Identity (central)

� Access Management (central)

WSO2 – Architecture

WSO2 – Gateway

2 User Interface

Petr Aubrecht’s View

� UI is ALWAYS difficult (especially for Java developer), mostly hated...

� Who is expert in these technologies:

– (X)HTML

– CSS

– JS

– sometimes XSL-T + XSL-FO (PDFs)

1

� How data is converted, modified, transferred

Figure 2: From https://apim.docs.wso2.com/en/4.0.0/get-started/
apim-architecture/

Figure 3: From http://www.evolutionoftheweb.com/

� Note, how often is Facebook broken (now – image cannot be closed sometimes)

� P.A. joke: JS solves lots of problems, which don’t exist without JS

� ...but it is the best place for innovation!

� What is the lenght of the application’s life – 1 year, 5 years, 10 years?

3 Historical Overview

Evolution of the Web

� Offline backup of evolutionoftheweb.com

2

Web Applications

� + Mozilla since 19981, Netscape released source codes

� A lot of standards, browsers, technologies, issues, approaches...

� 2024: several video codecs, no combobox, only JavaScript

– WebAssembly is not properly connected to DOM

Common Gateway Interface (CGI)

� Mid-1990s

� Server (httpd, Apache) starts a program

– passes parameters in environment variables

– stdout is returned to server and client

� Yes, it starts a program for every request

� Yes, written in C, Perl, later PHP

� No connection pools, no threads, no caching

� FastCGI – keep processes in memory

4 Java World

Servlet API

� Fast API, faster than CGI used at the time, May 1996

� (HTTP-specific) classes for request/response processing

� Response written directly into output stream sent to the client

� Processes requests concurrently, Servlet 3.0 with asynchronous calls

� Still used for non-HTML content (images, graphs, PDF)

public class ServletDemo extends HttpServlet{
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws IOException {

PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<body>");
out.println("<h1>Hello World!</h1>");
out.println("</body>");
out.println("</html>");

}
}

1https://www.mozilla.org/en-US/about/history/

3

Figure 4: JSP processing. From http://www.onjava.com/2002/08/28/
graphics/Jsp2_0303.gif

Java Server Pages

� HTML or XML markup with pieces of Java code – simple!

� JSPs are compiled into Servlets, e.g. as fast as Servlets

� JSP Standard Tag Library (JSTL) - a library of common functionalities – e.g.
forEach, if, out

� Combobox updating is a nightmare.

JSP Example

<html>
<head>

<title>JSP Example</title>
</head>
<body>

<h3>Choose a hero:</h3>
<form method=”get”>

<input type=”checkbox” name=”hero” value=”Master Chief”>Master Chief
<input type=”checkbox” name=”hero” value=”Cortana”>Cortana
<input type=”checkbox” name=”hero” value=”Thomas Lasky”>Thomas Lasky
<input type=”submit” value=”Query”>

</form>

<%
String[] heroes = request.getParameterValues(”hero”);
if (heroes != null) {
%>

<h3>You have selected hero(es):</h3>

<%
for (int i = 0; i < heroes.length; ++i) {

%>
<%= heroes[i] %>

<%
}

%>

<a href=”<%= request.getRequestURI() %>”>BACK

<%
}
%>

</body>
</html>

4

Java Server Faces

� Component-based framework for server-side user interfaces

� XML based description of page, setting up components

� Expression language used to join to Java code

� Rich components make it easy to quickly develop typical information systems –
PrimeFaces (!), RichFaces, IceFaces

� Component libraries add support for Ajax, templates

� Good choice for Java developers, most of functionality is done on server, easy
connection between UI components and Java

� https://www.primefaces.org/showcase

JSF Example I – Java

@Component("usersBack")
@Scope("session")
public class UsersBack {

@Autowired
private UserService userService;

public List<UserDto> getUsers() {
return userService.findAllAsDto();

}

public void deleteUser(Long userId) {
userService.removeById(userId);
FacesContext.getCurrentInstance().addMessage(null, new FacesMessage("User was
sucessfully deleted."));

}
}

JSF Example II – XHTML

<h:body>
<h1 class="title"><h:outputText value="#{msg[’list.title’]}"/></h1>
<h:form>
<p:dataTable var="user" value="#{usersBack.products}">
<p:column headerText="User">
<p:commandLink action="#{selectedUser.setUserById(’user’)}" ajax="false">
<h:outputText value="#{user.userName}" />
<f:param name="userid" value="#{user.id}" />

</p:commandLink>
</p:column>
<p:column headerText="Delete User" render="#{security.admin}">
<p:commandButton value="Delete" action="#{usersBack.deleteUser}" update="@form"
/>

</p:column>
<p:column headerText="Age">
<h:outputText value="#{user.age}"/>

5

Figure 5: Format of the output, based on schema

</p:column>
</p:dataTable>
<p:link outcome="book-store-welcome-page" value="Home"/>
<p:commandLink action="#{loginBean.logout()}" value="Logout" />

</h:form>
</h:body>

JSF Example III – Output

JSF Example IV – PrimeFaces More Complete Output

JSF Lifecycle

Features of Java Based UI

� Servlet – low-level, fastest

� JSP – simple interactive HTML page, like PHP, very fast

� JSF is based on request/response, which makes server request for every action.

� Page rendering (full or part of screen) happens on server.

– Performance for heavy sites can be an issue

– Not appropriate for apps like Google Office (lots of UI actions with rare
communication to server)

� JSF offers rich components libraries for typical scenarios, e.g. tables with filters,
sorting, paging, loading on-demand etc.

6

Figure 6: JSF lifecycle. From http://docs.oracle.com/javaee/5/tutorial/
doc/figures/jsfIntro-lifecycle.gif

7

� Impossible to write offline apps.

� Stable technology – compatible for years

� Difficult to add new or significantly extend existing components, easy to make
compound components.

Other Popular Frameworks

Google Web Toolkit (GWT) Write components in Java, GWT then generates JavaScript,
can make fat client, client and server share Java objects, quite slow compilation
due to compile for different browsers

Wicket Pages represented by Java class instances on server

Active:

Vaadin Originally built on top of GWT, no need to pre-compile Java→JS. Today, viable
independent project.

Spring MVC Servlet-based API with various UI technologies, originally JSP, but also
Thymeleaf, FreeMarker, Groovy Markup

5 JavaScript-based UI

JS-based UI Principles

� All rendering happens on the client side

� Application responds by manipulating the DOM tree of the page

� Fewer refreshes/page reloads, much more API communication instead

� Server communication happens in the background

� Single-threaded

� Asynchronous processing

� All of them expect NodeJS on server, otherwise they have big problems (e.g. page
not found when refresh)

� All need compilation, mostly transpilation from a bit more sane language (Type-
Script)

� Some parts run on both client and server.

� “Best practice” changes every 6 months (jQuery, transpilation, Redux, classes vs
hooks, Angular 2.0, micro front-ends, web components etc.)

� Incompatible implementations in browsers – yes, still.

8

JavaScript-based UI

� Client-side interface generated completely or partially by JavaScript

� Based on AJAX

– Dealing with asynchronous processing

– Events – user, server communication

– Callbacks, Promises

– When done wrong, it is very hard to trace the state of the application

– When done right, enables dynamic and fluid user experience

No jQuery

� jQuery is discouraged nowadays

� It is a collection of functions and utilities for dynamic page manipulation/rendering

� But building a complex web application solely in jQuery is difficult and the code
easily becomes messy

JS-based UI Classification
Declarative “HTML” templates with bindings, e.g. Angular.

<h2>Hero List</h2>

<p><i>Pick a hero from the list</i></p>

<li *ngFor="let hero of heroes" (click)="selectHero(hero)">
{{hero.name}}

<hero-detail *ngIf="selectedHero" [hero]="selectedHero"></hero-detail>

JS-based UI Classification
“Procedural” View structure is defined as part of the JS code, e.g. React.

class HelloMessage extends React.Component {
render() {
return <h1>Hello {this.props.message}!</h1>;

}
}

ReactDOM.render(<HelloMessage message="World" />, document.getElementById(’root’));

9

6 Single Page Applications

Single Page Applications

� Motivation: instant changes of UI

� Reality: True if done carefully. Messy, shaking UI otherwise (Jira)

� View changes done by modifications of the DOM tree

� Use router – URL parameters (bookmarkable!) and internal state define content

� Communication with the server in the background (very difficult with pure REST –
multiple asynchronous requests)

� Back/Refresh buttons cause disaster (lost work)

Single vs. Multi Page JS-based Web Applications

Multi Page Web Applications Individual pages use JS, but browser navigation still
occurs – browser URL changes and page reloads. Example: GitHub, FEL GitLab

Single Page Web Applications No browser navigation occurs, everything happens in
one page using DOM manipulation. Example: Gmail, YouTube

Single Page Application Specifics

� Almost everything has to be loaded when page opens

– Framework

– Application bundle

– Most of CSS

� Different handling of security

� Different way of navigation

� Difficult support for bookmarking

10

7 Frameworks

Angular (2+)

� Developed by Google (open-source)

� Completely rewritten since AngularJS (1.X)

� Encourages use of MVC with two-way binding

� HTML templates enhanced with hooks for the JS controllers

� Built-in routing, AJAX

� https://angular.io/

Angular Example

import { Component } from ’@angular/core’;
import { Hero } from ’../hero’;

@Component({
selector: ’app-heroes’,
templateUrl: ’./heroes.component.html’,
styleUrls: [’./heroes.component.css’]

})
export class HeroesComponent {
hero: Hero = {
id: 117,
name: ’Master Chief’

};

constructor() { }
}

<h2>{{hero.name}} Details</h2>
<div>id: {{hero.id}}</div>
<div>name: {{hero.name}}</div>

11

React

A JavaScript library for building user interfaces.

� Created and developed at Facebook Meta (open-source)

� Used extensively by Facebook and Instagram, but also Netflix, Uber, Microsoft
(e.g. Teams). . .

� High performance thanks to virtual DOM

� Leaves a lot to other libraries (routing, complex state, AJAX)

� XML-like JS syntax: JSX → transpilation (almost) inevitable

� React Native for developing native applications for iOS, Android and UWP in JS

� Easy to integrate into legacy web applications

� https://facebook.github.io/react/

React Example2

export default function MyComponent(props: MyProps) {
const router = useRouter();
const [data, setData] = useState<DataType>();

useEffect(() => {
restCall(props.id, response => setData(response.data), error => { })

}, [props.idExamDate])

return data.isVisible && (<div>{data}<div>);
}

Next.js

� Bookmarking, linking, SEO – large issues of many SPAs

� What if we could generate the HTML on the server instead?

� SSR:3 (pre-)rendering React server-side at request time with getServerSideProps,
then hydrating on the client

� SSG:4 (pre-)rendering at build time (data must be available) → just HTML and
JSON5 → cacheable, very fast (e.g. static websites)

2This example uses Hooks, which let you use state and other React features without writing a class.
Available from React 16.8 onwards.

3Server-Side Rendering.
4Static Site Generation.
5Not entirely true, still gets hydrated client-side.

12

� Incremental Static Regeneration: “periodic SSG” (e.g. blogs)

� Also includes routing, API routes, logging, error handling. . .

� https://nextjs.org/

WebComponents

� Components (like in React)

� HTML + DOM standardized

� Supported by all browsers, no library needed

� Remains on client, no server-side support needed

� Plain JavaScript

� Simple code in TypeScript via annotations

� Used in GitHub.com https://github.githubassets.com/assets/app/assets/modules/github/behaviors/batch-deferred-content.

ts

� https://www.webcomponents.org/, https://developer.mozilla.org/
en-US/docs/Web/Web_Components, https://github.com/aubi/sample-js-webelements

WebComponents Example

import {LitElement, html, css, customElement, property} from ’https://unpkg.com/lit-
element/lit-element.js?module’;

class NamedayElement extends LitElement {
constructor() {

super();
this.nameDay = ’loading...’;

}

static get properties() {
return {

date: {type: String },
dateDesc: {type: String },
nameDay: {type: String}

};
}

static get styles() {
return css‘.emph { color: green; }‘;

}

13

WebComponents Example (cont.)

connectedCallback() {
super.connectedCallback();
this.getModel().then(res => {

this.nameDay = res[0].name;
});

}

async getModel() {
var url = "https://svatky.adresa.info/json";
this.dateDesc = "Today";
var response = await fetch(url);
return response.json();

}

render() {
return html‘${this.dateDesc} is the nameday for ${this.nameDay

}‘;
}

}

customElements.define(’nameday-element’, NamedayElement);
in html:
<nameday-element dateDesc="Dnes" />

Other JS-based Alternatives

Vue

� Approachable, performant and versatile open source framework

� Similar to React in scope, performance and usage

� More template-oriented (not everything is JS) → better comprehensibility for
designers, HTML developers

� Used at Adobe, Trivago, GitLab. . .

� https://vuejs.org/

14

Other JS-based Alternatives

Ember

� Open source framework

� Templates using Handlebars

� Encourages MVC with two-way binding

� New components created using Handlebars templates + JS

� Built-in routing, AJAX

� http://emberjs.com/

Other JS-based Alternatives

BackboneJS

� Open source framework

� Provides models with key-value bindings, collections

� Views with declarative event handling

� View rendering provided by third-party libraries - e.g., jQuery, React

15

� Built-in routing, AJAX

� http://backbonejs.org/

And many others...

8 Integrating JavaScript-based Frontend with Backend

Frontend – Backend Communication

� JS-based frontend communicates with REST web services of the backend

� Usually using JSON as data format

� Asynchronous nature

– Send request

– Continue processing other things

– Invoke callback/resolve Promise when response received

16

Frontend – Backend Communication Example

↓

GET /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Connection: keep-alive
Accept: application/json
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.91 Safari/537.36

Frontend – Backend Communication Example II
↓

HTTP/1.1 200 OK
Date: Sun, 17 Nov 2019 16:12:46 GMT
Server: Apache/2.4.10 (Debian)
Content-Type: application/json

{
// JSON response body

}

Frontend – Backend Communication Example III

↓

17

Figure 7: GraphQL

GraphQL

� “Not everything has to be RESTful...”

� Query languange instead of agreeing on API.

� Introduces security vulnerability, needs careful checking!

GraphQL vs REST
REST is quite verbose – many API calls may be required.
Let’s load a person’s profile6:

� GET /user/144

� GET /user/144/friends

� GET /user/144/posts?limit=2

� GET /post/667/comments

� GET /post/1658/comments

For dashboards with different services, it gets even worse. . .The same query with GraphQL

POST /graphql

1This example is available at https://gitlab.fel.cvut.cz/ear/graphql-demo.

18

9 Client Architecture

Client Architecture

� JS-based clients are becoming more and more complex

– → necessary to structure them properly

� Plus the asynchronous nature of AJAX

� Several ways of structuring the client

Model View Controller (MVC)

� Classical pattern applicable in client-side JS, too

� Controller to control user interaction and navigation, no business logic

� Frameworks often support MVC

Client Architecture II

Model View View-Model (MVVM)

� Motivation – model cannot be simply presented in View, needs some conversion.

� Models hold application data. They’re usually structs or simple classes.

� Views display visual elements and controls on the screen. They’re typically
subclasses of UIView.

� View Models transform model information into values that can be displayed on a
view. They’re usually classes, so they can be passed around as references.

� View controllers provides functionality of UI, owns both View and View models.

� Used extensively in Android apps.

10 Conclusion

UI – Bits from Recent History

� REST + React.js are the most popular

� Flux/Redux are frequently used, useful for complex pages

� Rise of standard Web Components, vanilla JS/DOM starts providing functionality
of e.g. React

19

� WebAssembly – possibility to run code other than JS, can run C code

� HTML 5 is now common – supports several codecs for video, still doesn’t know
combobox (edit with dropdown list)

� The rest is very unstable:

– Angular is easy → Angular is hell, React is easy → React is hell, Vue is easy
→ Back to React → ???

– Java is bad for its types → JS is better → Well, we have troubles in bigger
projects → Move to TypeScript, types are cool → ???

– Server side is bad due to performance → Move to client-side rendering → JS
is slow → Move to server-side rendering in JS → ???

JS-based UI – My Experience I

� JS is most frequently used language. And most hated ever.

� Revolution happens every half a year, no stable best practices (opinions change
frequently)

� Frameworks change quickly, it is necessary rewrite applications continuously (e.g.
spending money without any added value)

� JS is no more “write&run”, it needs compile, often transpilation, etc.

� JS in UI effectively require JS on server, modern frameworks work badly in produc-
tion mode without extensive configuration.

� Reason for JS was performance, which is now returning back to server (server-side
rendering)...

� JS leads to splitting teams to backend and frontend

� Appropriate for sites like Facebook.

� JSF accesses Java objects directly, JS requires every data exchange visible via
REST, much more work and vectors for attack

� Duplicate validation on client & server

JS-based UI – My Experience II, Technologies

� GWT – perfect for Java programmers, full type-check, all Java, sustaining mode
(Vaadin is still developed). It was great for fat clients for Java team.

20

� JSF – Java programmers learn it quickly, easy to provide rich functionality, Prime-
Faces actively developed, modern Features available (asynchronous processing,
WebSocket), rarely strange behavior (e.g. methods with parameters called from
table). Great for typical information systems.

� JS, React.js – basics are simple, with complexity rapidly grow problems like
compilation sometimes suddenly breaks; strange behavior of this.props.router.query;
when multiple REST calls are needed, it is difficult to render screen with partial
data; complex correct handling of errors. The only solution for really fat client.

� Fullstack – GWT, JSF or JS + node.js allow fullstack developer, JS + REST needs
two teams

The End

Thank You

Resources

� M. Fowler: Patterns of Enterprise Application Architecture,

� https://dzone.com/articles/java-origins-angular-js,

� https://msdn.microsoft.com/en-us/magazine/dn463786.aspx,

� http://singlepageappbook.com/index.html,

� http://adamsilver.io/articles/the-disadvantages-of-single-page-applications/,

� http://www.oracle.com/technetwork/articles/java/webapps-1-138794.html,

� https://martinfowler.com/articles/micro-frontends.html.

21

