
1 Virtualization – Motivation

Motivation

� Sharing of Computers

– mainframes – share powerful/expensive server hardware

– network computing – run cheap user machines

� Running Different OS – required OS, multiple OSs

� Simulate Different HW – no need to have specific hardware

� Simplify deployment – unified environment!!!

� Clouds

– give up skills to cloud provider, who have the specialists, security certificates...

Types of Virtualization

� Virtual Machines, Hardware Virtualization

– Native virtualization: z/VM (OS360, mainframes), KVM, VMWare ESXi,
Xen

– Hosted: VMWare Server/Workstation(Player), VirtualBox

� OS containers: categorized by level of isolation of user space

– containers: (Docker, Podman)

– jails: chroot (Linux) or jail (FreeBSD)

– other: zones (Solaris), partitions, virtual environments, virtual kernels (Drag-
onFly BSD)

� Desktop virtualization: next slide

Key Problem
Performance?

Desktop Virtualization

� Thin clients, network computing (Sun Microsystems, using ssh and X forward),
diskless computers, booted from SFTP (my own reason to switch to Linux)

� Multiseat configuration (native in Unixes, Citrix, Win Server)

� Remote desktop (VNC, RDP)

� Recently – 3D games streaming

1



Figure 1: www.docker.com/resources/what-container/

Containers vs. Virtual Machines

Virtualization in Clouds

Cloud Services

� On-prem: software that is installed in the same building as your business.

� IaaS: cloud-based services, pay-as-you-go for services such as storage, networking,
and virtualization.

� PaaS: hardware and software tools available over the internet.

� SaaS: software that is available via a third-party over the internet.

� Where is SpringBoot???

� SpringBoot – between IaaS and PaaS, requires Operating system, provides Middle-
ware (built-in Tomcat)

Features

� Snapshots

� Migration

� Failover

� Licensing (e.g. Windows in VM requires license, Oracle licenses. . . )

2



Figure 2: medium.com/swlh/iaas-vs-paas-vs-saas-dfece8fd6ca

2 Docker

Containers

� Rise of containers

– fast, very little overhead

– safe enough, separates users/customers

– simple to configure

� Provide only fence between processes

– share kernel

– share memory

– share CPU

– process from inside doesn’t see outside

– virtualizes network, volumes (disk space)

� Docker became the most popular

Limits

� Memory limits

� CPU quotas

3



Figure 3: medium.com/@BeNitinAgarwal/understanding-the-docker-internals-7ccb052ce9fe

� Network isolation

� File system isolation (copy on write, disk quotas, I/O rate limits)

� Live migration

� Nested virtualization

� Based on Linux’s cgroups

Docker: Resource Isolation

2.1 Basics

Basics

� image – read-only template

� container – encapsulated environment based on

� layers – transparent union filesystem

– dependencies between images are layers (download independently)

– line in Dockerfile is a layer (cache between rebuilds)

� registry – keeps list of named images

� volume – link to hosting filesystem

Docker: Image and Container Layers

4



Figure 4: medium.com/@kuldeepkumawat195/understanding-docker-layered-architecture-06695c80806f

Figure 5: frenchymike.hashnode.dev/understand-the-docker-layers

5



Docker: Multiple Containers

2.2 Make Your Own Docker

SpringBoot/Docker Guide

� https://spring.io/guides/topicals/spring-boot-docker/

Docker Your App

FROM eclipse-temurin:17-jdk-alpine
COPY target/*.jar app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

� Dockerfile (default name of the image will be the directory name)

� Based on eclipse-temurin:17-jdk-alpine (https://hub.docker.com/layers/library/eclipse-
temurin/17-jdk-alpine/images/sha256-595dfc1148baa2a6d632cfa7ec5c793191290957551be4a46dde6d6e6c31d9c1?context=exploresource)

� COPY copies file into image

� ENTRYPOINT – what is executed (container ends with this process)

� docker build -t kbss/e-shop .

Docker Your App

FROM eclipse-temurin:17-jdk-alpine
VOLUME /tmp
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} app.jar
ENTRYPOINT ["sh", "-c", "java ${JAVA_OPTS} -jar /app.jar"]

� Dockerfile (default name of the image will be the directory name)

� Based on eclipse-temurin:17-jdk-alpine (https://hub.docker.com/layers/library/eclipse-
temurin/17-jdk-alpine/images/sha256-595dfc1148baa2a6d632cfa7ec5c793191290957551be4a46dde6d6e6c31d9c1?context=exploresource)

� VOLUME makes persistent storage

� ARG specifies argument with default value

� COPY copies file into image

� ENTRYPOINT – what is executed (container ends with this process)

� docker build --build-arg JAR FILE=target/*.jar -t kbss/e-shop
.

6



Build on a Clean Machine

� multi-stage build

� requires nothing on build machine, on front-end developer’s machine

� copying data between containers

FROM maven:3.9.5-eclipse-temurin-17-alpine as build
WORKDIR /workspace/app
COPY pom.xml .
COPY src src

RUN mvn install

FROM eclipse-temurin:17-jdk-alpine
VOLUME /tmp
COPY --from=build /workspace/app/target/eshop-0.0.1.jar app.jar
ENTRYPOINT ["sh", "-c", "java ${JAVA_OPTS} -jar /app.jar"]

Few More Options

� https://docs.docker.com/engine/reference/builder/

� Security

– USER – run as a different user

� why alpine

– small

– security – small attack vector, few CVEs!!!

– but no ping, traceroute. . .

� docker repositories (company-local)

� CI/CD, jenkins, automatic upload to nexus, docker repo

Docker – Beyond One App

� docker compose

– run several docker images together

– provide configuration for run

– share network

– “Infrastructure as a code”

– docker-compose up

– docker-compose up -d

– docker-compose down

7



Docker-compose

version: ’3’
services:
spring:
image: kbss/e-shop
restart: unless-stopped
depends_on:
- db

ports:
- "8080:8080" # web

db:
image: postgres
restart: always
volumes:
- db:/var/lib/postgresql/data

environment:
- POSTGRES_DB=ear
- POSTGRES_USER=ear
- POSTGRES_PASSWORD=ear

ports:
- "8254:5432"

volumes:
db:

Demo

� Build eshop

� Prepare Docker file

� multistage to build

� Prepare docker-compose with PG

Further Topics

� testcontainers

– testing using Docker containers

– perfect separation, complete environments

– slower

� kubernetes

– orchestarate many images on many nodes

– yes, cloud

Real Deployment – Reverse Proxy

� Java application server is usually not publicly accessible

� Reverse proxy is used for performance and security

8



Figure 6: https://www.cloudflare.com/learning/cdn/glossary/
reverse-proxy/

Forward Proxy

Reverse Proxy

Reverse Proxy

� Performance

– web servers work faster than Java application server

– perfect for static files (images, script)

– faster SSL handling (ideally with HW support)

� nginx/apache – either one

� certificates – When separated computer, can have separate admin and customer’s
certificate.

� security – simple servers have less vulnerabilities

The End

Thank You

9



Figure 7: https://www.cloudflare.com/learning/cdn/glossary/
reverse-proxy/

References

Dockerfile Documentation https://docs.docker.com/engine/reference/builder/

Spring Boot Docker https://spring.io/guides/topicals/spring-boot-docker/

Reverse Proxy https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy/

10


