
1 Web Services

What is a web service?

Definition: A Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its description using
SOAP messages, typically conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.

— W3C, Web Services Glossary
https://www.w3.org/TR/ws-arch/\#whatis

Two Major Classes

We can identify two major classes of Web services:

� REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

� arbitrary Web services, in which the service may expose an arbitrary set
of operations.

— W3C, Web Services Architecture (2004)
https://www.w3.org/TR/ws-arch/\#relwwwrest

From SOAP to REST

� First technology for interactive web applications used AJAX – Asynchronous
Javascript And Xml, but processing of XML is not convenient in Javascript

� Raise of using JavaScript Object Notation – JSON

– Simpler testing (SOAP required software like SoapUI)

– Plenty of helping apps: Postman, Insomnia, curl, web browser

– Javascript is simpler to start with than Java (e.g. there are more JS program-
mers and they are cheaper)

Web Service API Distribution

1

Figure 1: Interest in web service APIs. Source: https://blog.wishtack.com/
rest-apis-best-practices-and-security/

2 RESTful Web Services

Basic terms

� Uniform Resource Identifier (URI) is a string of characters used to identify a
resource. (e.g., http://www.fel.cvut.cz/cz/education/)

� The Hypertext Transfer Protocol (HTTP) is an application protocol for
distributed, collaborative, hypermedia information systems. It is the foundation of
data communication for the World Wide Web.

– initiated by Tim Berners-Lee at CERN in 1989

� Representational State Transfer (REST) is an architectural style for dis-
tributed hypermedia systems.

– defined in 2000 by Roy Fielding in his doctoral dissertation

Understanding REST

� REST is an architectural style, not standard

� It was designed for distributed systems to address architectural properties such
as performance, scalability, simplicity, modifiability, visibility, portability, and
reliability

� REST architectural style is defined by 6 principles/architectural constraints (e.g.,
client-server, stateless)

� System/API that conforms to the constraints of REST can be called RESTful

2

HTTP Verb CRUD Collection (e.g. /categories) Specific Item (e.g. /categories/{id})

POST Create 201 Created1 405 Method Not Allowed /409 Conflict3

GET Read 200 OK, list of categories 200 OK, single category/404 Not Found4

PUT Update/Replace 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

PATCH Update/Modify 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

DELETE Delete 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

Table 1: Recommended return values of HTTP methods in combination with the resource
URIs.

REST principles

1. Client-server

2. Uniform interface

� Resource-based

� Manipulation of resource through representation

� Self-descriptive messages

� Hypermedia as the engine of application state

3. Stateless interactions

4. Cacheable

5. Layered system

6. Code on demand (optional)

Building RESTful API

� Built on top of existing web technologies

� Reusing semantics of HTTP 1.1 methods

– Safe and idempotent methods

– Typically called HTTP verbs in context of services

– Resource oriented, correspond to CRUD operations

– Satisfies uniform interface constraint

� HTTP Headers to describe requests & responses

� Content negotiation

3

2.1 Conventions

Recommended Interaction of HTTP Methods w.r.t. URIs

�
1 – returns Location header with link to /categories/{id} containing new ID

�
2 – unless you want to update/replace/modify/delete whole collection

�
3 – if resource already exists

�
4 – if ID is not found or invalid

Naming conventions

� resources should have name as nouns, not as verbs or actions

� plural if possible to apply

� URI should follow a predictable (i.e., consistent usage) and hierarchical structure
(based on structure-relationships of data)

Correct usages
POST /customers/12345/orders/121/items GET /customers/12345/orders/121/items/3
GET|PUT|DELETE /customers/12345/configuration

Anti-patterns
GET /services?op=update customer&id=12345&format=json PUT /customers/12345/update

HTTP Verbs – GET

GET /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Accept: application/json
Cache-Control: no-cache

HTTP/1.1 200
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Content-Type: application/json;charset=UTF-8

[{
"id": 2,
"name": "CPU"

}, {
"id": 7,
"name": "Graphic card"

}, {
"id": 11,
"name": "RAM"

}]

4

HTTP Verbs – POST

POST /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

{
"name": "Motherboard"

}

HTTP/1.1 201
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Location: http://localhost:8080/eshop/rest/categories/151

HTTP Verbs – PUT

PUT /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9

{
"id":8,
"name":"MSI GeForce GTX 1050 Ti 4GT OC",
"amount":50,
"price":4490.0,
"categories":[{

"id":7,
"name":"Graphic card"

}],
"removed":false

}

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

HTTP Verbs – DELETE

DELETE /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Demo

Let’s examine SpaceX REST API.
https://documenter.getpostman.com/view/2025350/RWaEzAiG\#intro

5

Figure 2: A model (developed by Leonard Richardson) that breaks down the principal
elements of a REST approach into three steps about resources, http verbs, and
hypermedia controls. Source: http://martinfowler.com/articles/
richardsonMaturityModel.html

The Richardson Maturity Model

� provides a way to evaluate compliance of API to REST constraints

2.2 HATEOAS

HATEOAS

� Hypermedia as the Engine of Application State

� Final level of the Richardson Maturity Model

� Client needs zero or little prior knowledge of an API

� Client just needs to understand hypermedia

� Server provides links to further endpoints

� Often difficult to implement

– Not many usable libraries

HATEOAS Example
*EAR e-shop does not support HATEOAS.

{
"id": 2,
"name": "CPU",
"links": [{

"rel": "self",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {

6

"rel": "edit",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "products",
"href": "http://localhost:8080/eshop/rest/categories/2/products"

}]
}

We are using the Atom link format.

2.3 Linked Data

Linked Data

� Method of publishing structured data allowing to interlink them with other data

� Builds upon the original ideas of the Web

– Interconnected resources, but this time, machine-readable

� Knowledge-based systems, context-aware applications, precise domain description,
knowledge inference

� Still possible to build REST APIs, but resources have global identifiers now

� Attributes and relationships also globally identifiable and may have well-defined
meaning

Linked Data Example

{
"@context": {
"name": "http://www.w3.org/2000/01/rdf-schema#label",
"description": "http://purl.org/dc/terms/description",
"products": "http://onto.fel.cvut.cz/ontologies/eshop/has-product"

},
"@id": "http://onto.fel.cvut.cz/eshop/categories/cpu",
"products": {
"@id": "https://ark.intel.com/products/97455/Intel-Core-i3-7100-Processor-3M-Cache

-3-90-GHz",
"name": "Intel Core i3-7100"

},
"description": "Category of Central Processing Units for computers.",
"name": "CPU"

}

3 Spring

REST in Spring

@RestController
public class CarController {

@Inject private CarService carService;

7

@GetMapping("/cars")
public Cars allCars(@RequestParam(value = "name", defaultValue = "World") String

name) {
return carService.listAllCars();

}
}

REST Documentation – Source

@RestController
@RequestMapping("/resources/demo")
public class JavaEE8Resource {

@GetMapping
public Response ping(){

return Response
.ok("ping")
.build();

}

@GetMapping("{id}", produces = MediaType.APPLICATION_JSON_VALUE)
public SampleObject objects(@PathParam("id") Integer id) {

return new SampleObject(id, "NAZDAR!");
}

}

REST Documentation – Output

� Documentation of REST is done in two (similar) formats: Swagger or OpenApi

� https://download.eclipse.org/microprofile/microprofile-open-api-3.
1 → spec, Annotations

� HOWTO in Spring: https://www.baeldung.com/spring-rest-openapi-documentation

REST Documentation – Output

openapi: 3.0.0
info:
title: Deployed Resources
version: 1.0.0

servers:
- url: http://pidibook:8080/DemoRest1
description: Default Server.

paths:
/resources/demo:
get:
operationId: ping
responses:
default:...

/resources/demo/objects:
get:
operationId: objects
responses:
default:
content:

8

’*/*’:
schema:
$ref: ’\#/components/schemas/SampleObject’

...

REST Documentation – Output

...
/resources/demo/objects:
get:
operationId: objects
responses:
default:
content:
’*/*’:
schema:
$ref: ’\#/components/schemas/SampleObject’

components:
schemas:
SampleObject:
type: object
properties:
demoInt:
type: integer

demoString:
type: string

4 JAX-RS

JAX-RS Standard

� Part of the Jakarta EE (formerly Java EE) stack

� Today, you can meet it as a key part of MicroProfile

– Frequently used for microservices

– Servers: Quarkus1, Helidon2

– With CDI, it can start in about about 100 ms

– With GraalVM and container support, it’s possible to start in 20 ms

� Same approach, different annotations

JAX-RS Standard

@Path("v1/cars")
@Produces(MediaType.APPLICATION_JSON)
public class CarsResource {

@GET
public Cars allCars() {

1https://quarkus.io/
2https://helidon.io

9

return service.allCars();
}

@Path("{id}")
@GET
public Car oneCar(@PathParam("id") Integer id) {

return service.findById(id);
}

@Path("{id}")
@DELETE
public Response deleteOneCar(@PathParam("id") Integer id) {

service.remove(id);
return Response.noContent().build();

}

JAX-RS Client

Client client = javax.ws.rs.client.ClientBuilder.newClient();
WebTarget webTarget = client.target(BASE_URI).path("v1/cars");
webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_JSON)

.get(Cars.class)

MicroProfile – REST Support

@RegisterRestClient(baseUri = "https://api.spacexdata.com/")
@Path("v3")
public interface SpaceXRestClient {

@GET
@Path("rockets/")
@Produces(MediaType.APPLICATION_JSON)
public List<RestRocket> all();

@GET
@Path("rockets/{rocket_id}")
@Produces(MediaType.APPLICATION_JSON)
public RestRocket rocket(@PathParam("rocket_id") String rocketId);

}
use:

@Inject
@RestClient
SpaceXRestClient spaceXRestClient;

{ spaceXRestClient.all(); }

5 Security

REST – Security

� Same as HTML – HTTPS, passwords (e.g. BASIC Authentication)

� Usage of JWT (JSON Web Token), mainly makes sense for µServices (holds signed
roles, other information so some services don’t need user database)

10

� Origin – necessary to use either reverse (https) proxy or CORS headers

� Security is a huge problem

– No way, how to hide endpoints, easy to play with

– Double security – on client, on server

– Every single data must have REST, every dropdown list, every table, every
form

– Very difficult to check EVERYTHING – objects are returned and only parts
of them are allowed to change (e.g. mail, username, password, but not id,
roles). In some other cases it is allowed (e.g. by superadmin).

6 GraphQL

GraphQL

� REST still requires a lot of cooperation over API (Java↔JS)

� Let’s introduce a query language, GraphQL:

– Schema

– Mapping by Annotations

– Query

� Executed exclusively via POST

� Can combine multiple objects

� 3 minutes demo: https://www.graphql-java.com/tutorials/getting-started-with-spring-boot/

� What is GraphQL: https://graphql.org/

GraphQL Schema

type Query {
bookById(id: ID): Book

}

type Book {
id: ID
name: String
pageCount: Int
author: Author

}

type Author {
id: ID
firstName: String
lastName: String

}

11

GraphQL Controller

@Controller
class BookController {

@QueryMapping
public Book bookById(@Argument String id) {

return Book.getById(id);
}

@SchemaMapping
public Author author(Book book) {

return Author.getById(book.authorId());
}

}

GraphQL Query and Result

query bookDetails {

bookById(id: "book-1") {
id
name
pageCount
author {
id
firstName
lastName

}
}

}

{
"data": {
"bookById" {
"id": "book-1",
"name": "Harry Potter and the Philosopher’s Stone",
"pageCount": 223,
"author": {
"id": "author-1",
"firstName": "Joanne",
"lastName": "Rowling"

}
}

}

7 Conclusions

REST – Battlefield Experience

� Good support in Spring, JAX-RS, great in MicroProfile

� Great idea to add API version to url, e.g. /rest/v1/cars

12

� Use DTO frequently, always for list/array

� ID returned in URL – needs to be parsed

� Messages returned in HTTP header are in ASCII, e.g. no Czech messages

� Various errors return messages in various parts of the JS response object

� Using JavaScript Object Notation (JSON) between languages having nothing with
JS in µServices

� Generation of client from service description

REST Conclusions

Pros

� API first (agree on API, then code on both sides)

� Easy to build

� Easy to use

� Standard technologies – HTTP, JSON, XML

� Platform-independent (JS-based web pages, mobiles)

� Stateless, cacheable

Cons

� No standard for REST itself – APIs build in various ways

� No full generator for all the possibilities (lack in documentation)

� No “registry” of REST services

The End

Thank You

13

Resources

� Fielding, R.T., 2000. Architectural styles and the design of network-based software
architectures (Doctoral dissertation, University of California, Irvine),

� Fowler, M., 2010. Richardson Maturity Model: steps toward the glory of REST.
Online at http://martinfowler.com/articles/richardsonMaturityModel.html.

� Lanthaler, M. and Gütl, C., 2012, April. On using JSON-LD to create evolvable RESTful services.
In Proceedings of the Third International Workshop on RESTful Design (pp. 25-32). ACM.

� https://spring.io/understanding/REST

� https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

� http://linkeddata.org/

14

