
Integration of Applications, Web Services

Petr Aubrecht (Martin Ledvinka)

aubrecht@asoftware.cz

Winter Term 2024

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 1 / 46



Contents

1 Cooperating Programs – Why?

2 Approaches – Data Sharing

3 Remote Execution – Platform-specific

4 Remote Execution – Platform-independent

5 Remote Execution – Web Services

6 HTTP

7 Conclusions

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 2 / 46



Cooperating Programs – Why?

Cooperating Programs – Why?

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 3 / 46



Cooperating Programs – Why?

What’s Wrong – Reliability

Business loses millions of dollars every minute the server is down.

Have you ever tried to run server? How much downtime did you have?

Critical systems need 99.999 % reliability = 5 minutes/year.

Examples of failure: “České spǒritelně v sobotu několik hodin
nefungovalo internetové bankovnictv́ı.”

Amazon cloud 2017:
https://en.wikipedia.org/wiki/Timeline_of_
Amazon_Web_Services#Amazon_Web_Services_outages

Solution: Backup systems

Problem: double/triple price, same performance

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 4 / 46

https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services#Amazon_Web_Services_outages
https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services#Amazon_Web_Services_outages


Cooperating Programs – Why?

What’s Wrong – Scaling

Hardware doesn’t scale well

RAM scaling:

16 GB CZK 800
32 GB CZK 1.500
64 GB CZK 5.000
128 GB CZK 7-14.000
256 GB CZK 100.000
512 GB CZK 300.000
10 TB? How? Mainframe? Great for very rich customers.

The same problem is with disks (RAID helps a bit), CPUs. . .

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 5 / 46



Cooperating Programs – Why?

Solution – Horizontal Scaling

Let’s use backup system to cooperate on processing data!

Let’s have multiple cheap computers, where price of 1 TB RAM
= 16× 64 GB, CZK 80.000 (compare to 2× 512 GB, 600.000)

Similar approach as RAID (Redundant Array of Inexpensive Disks)

How to distribute the tasks?

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 6 / 46



Cooperating Programs – Why?

Distributed Systems

Distributed (fault tolerant) systems

Able to process requests concurrently
Scalable
Can handle faults, only decrease performance

Caveats

Less predictable
More complex
More difficult to secure
Effort to manage the system

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 7 / 46



Approaches – Data Sharing

Approaches – Data Sharing

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 8 / 46



Approaches – Data Sharing

File

Applications exchange data by writing into a shared file

Pipeline processing

Shared filesystems, locking

Problems: format, schema, scalability, concurrency, notifications

Figure: Application pipeline diagram.

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 9 / 46



Approaches – Data Sharing

Database

Applications share database, possibly use different views of the same
database

No integration layer needed, application data always up to date

Problems: polling – no notifications, schema evolution, still used!

Figure: Applications using shared database.

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 10 / 46



Remote Execution – Platform-specific

Remote Execution –
Platform-specific

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 11 / 46



Remote Execution – Platform-specific

RPC

Remote Procedure Call, theory in 1970s, first implementation in early
1982, started in Unix/C, today NFS, known target

Client invokes methods of a remote interface on a local stub

Stub is a RMI-generated proxy object representing the remote
implementation

Server implements remote interface to export methods which can be
called remotely

Object-oriented equivalent of remote procedure call (see later)

Java – RMI, Python – RPyC, Ruby – Distributed Ruby, Erlang – built
into the language, Go, Rust – Tarpc

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 12 / 46



Remote Execution – Platform-specific

Java RMI
Java-specific technology for distributed systems
Java Remote Method Protocol

Wire-level protocol (application layer) on top of TCP
Binary

RMI supports primitive types and Serializable
RMI registry

Server registers at RMI registry as a provider of remote objects
Client uses RMI registry to look up remote objects

Figure: Schema of Java RMI components.

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 13 / 46



Remote Execution – Platform-independent

Remote Execution –
Platform-independent

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 14 / 46



Remote Execution – Platform-independent

XML-RPC

Client-server architecture

Typically synchronous

Try it Yourself:
https://gitlab.fel.cvut.cz/ear/xmlrpcserver

XML-RPC

Standard for remote procedure call using XML as message format

Platform independent

Over HTTP

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 15 / 46

https://gitlab.fel.cvut.cz/ear/xmlrpcserver


Remote Execution – Platform-independent

XML-RPC Example
Request

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value><int>41</int></value>

</param>
</params>

</methodCall>

Response

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>South Dakota</string></value>
</param>

</params>
</methodResponse>

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 16 / 46



Remote Execution – Platform-independent

CORBA

Common Object Request Broker Architecture

Introduces Middleware (ORB), more complex setup

OMG standard for language and platform-independent distributed
computing architecture

Similar to RPC but object-oriented

Transparent location – client is unaware whether invocation is local or
remote

Also a caveat – local invocation cannot be optimized and has to go
through the whole ORB machinery

Standards for interface definition, communication protocols, location

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 17 / 46



Remote Execution – Platform-independent

CORBA – IDL

Interface Definition Language (IDL)

Standardized language for specification of interface provided by an
object

Mappings for IDL exist in all major programming languages

Used to generate Stub/Skeleton code

module HelloApp {
interface Hello {
string sayHello();
oneway void shutdown();
};

};

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 18 / 46



Remote Execution – Platform-independent

CORBA – ORB

Object Request Broker (ORB)

Middleware allowing transparent local and remote invocation

Handles data serialization/deserialization based on IDL

Knows location of the actual service implementation

Is able to handle, e.g., transactions

General InterORB Protocol – GIOP: Protocol for communications
between ORBs

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 19 / 46



Remote Execution – Platform-independent

CORBA – Java Implementation Example

class HelloImpl extends HelloPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

public void shutdown() {
orb.shutdown(false);

}

// actual function
public String sayHello() {

return "\nHello world !!\n";
}

}

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 20 / 46



Remote Execution – Web Services

Remote Execution – Web Services

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 21 / 46



Remote Execution – Web Services

What is a web service?

A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

REST-compliant Web services, in which the primary purpose
of the service is to manipulate XML representations of Web
resources using a uniform set of ”stateless” operations; and
arbitrary Web services, in which the service may expose an
arbitrary set of operations.

— W3C, Web Services Architecture (2004)

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 22 / 46



Remote Execution – Web Services

SOAP

Simple Object Access Protocol

Standard protocol for web service communication

Combo SOAP + WSDL + UDDI

XML-based, successor of XML-RPC

In contrast to CORBA:

Universal, no language binding (IDL) required
XML-based (CORBA protocols binary)
Stateless
Possibly asynchronous

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 23 / 46



Remote Execution – Web Services

SOAP

WSDL

Web Service Description Language

XML-based description of web service interface

Clients know how to communicate with web service based on WSDL
description

No generated skeleton or stub needed

UDDI

Universal Description, Discovery and Integration

Universal register of WSDL descriptions of SOAP web services

Simplifies web service discovery

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 24 / 46



Remote Execution – Web Services

SOAP

SOAP

Messages consist of:

Envelope – single per request/response
(Optional) header – additional information, e.g., timeout, security
Body – data
(Optional) Fault – error handling

Always sent via HTTP POST

Annotations allowed generating XML schema automatically

XML schemas allowed generating client API (e.g. in Java)

Caveats:

VERY complex (and unclear) security model
Potentially complex message structure (some information in header
insteady of body)
Bad opinion about XML, Javascript devs don’t like it

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 25 / 46



Remote Execution – Web Services

SOAP

Figure: SOAP+WSDL+UDDI. Source:
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=
semanticweb

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 26 / 46

http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb


Remote Execution – Web Services

DEMO

DEMO (opt)
Create class

@WebService

Deploy to Server (Glassfish or Payara), show generated WSDL

Use NetBeans to quickly generate Client (in Jakarta EE)

Deploy, run

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 27 / 46



Remote Execution – Web Services

Peer to Peer (P2P)

Decentralized architecture where nodes function as servers and clients

Content distribution, sharing, grid computing

Types

Unstructured – no central node, peers discover each other (each peer
starts with a few possible connections and builds a list of other peers)
Structured – network has a topology, more efficient peer discovery
Hybrid – combination of P2P and client/server – usually server helps
clients discover other peers, search etc.

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 28 / 46



Remote Execution – Web Services

P2P

Figure: Source: https://www.researchgate.net/figure/
Blockchain-P2P-Network_fig1_320127088

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 29 / 46

https://www.researchgate.net/figure/Blockchain-P2P-Network_fig1_320127088
https://www.researchgate.net/figure/Blockchain-P2P-Network_fig1_320127088


Remote Execution – Web Services

Architecture

Service Oriented Architecture (SOA)

System is split into self-contained separate units – services

Services use each other to provide functionality

Services can be developed separately, use different technologies, be
removed or replaced without affecting the system as a whole

NOT to confuse with Web Services

Example: SSO, text analysis service

Microservices

No precise definition exists, for some it is a more advanced (purer)
implementation of SOA

Software units communicating over lightweight mechanisms (HTTP),
deployed using automated machinery and DevOps

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 30 / 46



Remote Execution – Web Services

Communication

SOA – Enterprise Service Bus (ESB)

ESB is a middleware

Indirection in service communication – decoupling, routing,
synchronous or asynchronous communication

May support multiple protocols – SOAP, REST

RabbitMQ, Apache Kafka, Apache ActiveMQ

Microservices

decentralized orchestration, load balancers, cloud tools

Each service may have configuration of other possible services it can use

Or single service registry

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 31 / 46



Remote Execution – Web Services

REST

Next week

Based on HTTP, let’s start with a refresher

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 32 / 46



HTTP

HTTP

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 33 / 46



HTTP

HTTP protocol basics

HTTP is a client-server application-level protocol

Typically runs over a TCP/IP connection

Extensible – e.g., video, image support

Stateless

Cacheable

Requires reliable transport protocol – no UDP

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 34 / 46



HTTP

HTTP Request

Message header

Request line – identifies HTTP method, URI and protocol version
Request headers

Message body

Figure: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 35 / 46

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html


HTTP

HTTP Response

Message header

Status line – identifies protocol version and response status code
Response headers

Message body

Figure: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 36 / 46

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html


HTTP

HTTP Headers

Typical, often used HTTP headers

Request Response
Content � Content-Type � Content-Type

� Content-Length � Content-Length
� Content-Encoding � Content-Encoding
� Accept

Caching � If-Modified-Since � Last-Modified
� If-Match � ETag

Miscellaneous � Cookie � Set-Cookie
� Host � Location
� Authorization
� User-Agent

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 37 / 46



HTTP

HTTP Methods

GET

Used to retrieve resource at request URI

Safe and idempotent

Cacheable

Can have side effects, but not expected

Can be conditional or partial (If-Modified-Since, Range)

POST

Requests server to create new resource from the specified body

Can be used also to update resources

Should respond with 201 status and location of newly created resource
on success

Neither safe nor idempotent

No caching

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 38 / 46



HTTP

HTTP Methods

PUT

Requests server to store the specified entity under the request URI

Server may possibly create a resource if it does not exist

Usually used to update resources

Idempotent, unsafe

DELETE

Used to ask server to delete resource at the request URI

Idempotent, unsafe

Deletion does not have to be immediate

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 39 / 46



HTTP

HTTP Response Status Codes

1xx – rarely used

2xx – success

200 OK – requests succeeded, usually contains data
201 Created – returns a Location header for new resource
202 Accepted – server received request and started asynchronous
processing
204 No Content – request succeeded, nothing to return

3xx – redirection

304 Not Modified – resource not modified, cached version can be used
(try https://javaconferences.org/)

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 40 / 46

https://javaconferences.org/


HTTP

HTTP Response Status Codes

4xx – client error

400 Bad Request – malformed syntax
401 Unauthorized – authentication required
403 Forbidden – server has understood, but refuses request
404 Not Found – resource not found
405 Method Not Allowed – specified method is not supported
409 Conflict – resource conflicts with client data
415 Unsupported Media Type – server does not support media type

5xx – server error

500 Internal Server Error – server encountered error and failed to process
request

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 41 / 46



HTTP

400 Bad Request

Don’t use it, if possible, provides no information!

Real-life xample of Bad Request, found after 2 days of finding the bug:

if (!METHODS_TO_IGNORE.contains(rc.getMethod()) && !rc.getHeaders().
containsKey("X-Requested-By")) {

throw new BadRequestException();
}

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 42 / 46



Conclusions

Conclusions

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 43 / 46



Conclusions

Conclusions

Most of today’s applications are distributed

At least tiered – backend and frontend separate

Most applications are integrated using web services

Services allow to build systems from independent modules

Coming Next Week

HTTP

Currently most popular Web service architecture – REST

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 44 / 46



Conclusions

The End

Thank You

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 45 / 46



Conclusions

Resources

https://martinfowler.com/bliki/IntegrationDatabase.html

M. Fowler: Patterns of Enterprise Application Architecture

http://xmlrpc.scripting.com/spec.html

http://www.corba.org/

K. Richta: Standardy pro webové služby WSDL, UDDI
https://www.ksi.mff.cuni.cz/˜richta/publications/
Richta-MD-2003.pdf

https://www.slideshare.net/PeterREgli/soap-wsdl-uddi

http://www.aqualab.cs.northwestern.edu/component/
attachments/download/228

https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/
Presentations/PDF/ch12.pdf

https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.
1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html

https://martinfowler.com/articles/microservices.html

Petr Aubrecht (Martin Ledvinka) (aubrecht@asoftware.cz)Integration of Applications, Web Services Winter Term 2024 46 / 46

https://martinfowler.com/bliki/IntegrationDatabase.html
http://xmlrpc.scripting.com/spec.html
http://www.corba.org/
https://www.ksi.mff.cuni.cz/~richta/publications/Richta-MD-2003.pdf
https://www.ksi.mff.cuni.cz/~richta/publications/Richta-MD-2003.pdf
https://www.slideshare.net/PeterREgli/soap-wsdl-uddi
http://www.aqualab.cs.northwestern.edu/component/attachments/download/228
http://www.aqualab.cs.northwestern.edu/component/attachments/download/228
https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf
https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://martinfowler.com/articles/microservices.html

	Cooperating Programs – Why?
	Approaches – Data Sharing
	Remote Execution – Platform-specific
	Remote Execution – Platform-independent
	Remote Execution – Web Services
	HTTP
	Conclusions

