
1 Cooperating Programs – Why?

What’s Wrong – Reliability

� Business loses millions of dollars every minute the server is down.

� Have you ever tried to run server? How much downtime did you have?

� Critical systems need 99.999 % reliability = 5 minutes/year.

� Examples of failure: “České spořitelně v sobotu několik hodin nefungovalo interne-
tové bankovnictv́ı.”

� Amazon cloud 2017: https://en.wikipedia.org/wiki/Timeline_of\
_Amazon_Web_Services\#Amazon_Web_Services_outages

� Solution: Backup systems

� Problem: double/triple price, same performance

What’s Wrong – Scaling

� Hardware doesn’t scale well

� RAM scaling:

– 16 GB CZK 800

– 32 GB CZK 1.500

– 64 GB CZK 5.000

– 128 GB CZK 7-14.000

– 256 GB CZK 100.000

– 512 GB CZK 300.000

– 10 TB? How? Mainframe? Great for very rich customers.

� The same problem is with disks (RAID helps a bit), CPUs. . .

Solution – Horizontal Scaling

� Let’s use backup system to cooperate on processing data!

� Let’s have multiple cheap computers, where price of 1 TB RAM = 16× 64 GB,
CZK 80.000 (compare to 2× 512 GB, 600.000)

� Similar approach as RAID (Redundant Array of Inexpensive Disks)

� How to distribute the tasks?

1

Figure 1: Application pipeline diagram.

Distributed Systems

� Distributed (fault tolerant) systems

– Able to process requests concurrently

– Scalable

– Can handle faults, only decrease performance

� Caveats

– Less predictable

– More complex

– More difficult to secure

– Effort to manage the system

2 Approaches – Data Sharing

File

� Applications exchange data by writing into a shared file

� Pipeline processing

� Shared filesystems, locking

� Problems: format, schema, scalability, concurrency, notifications

Database

� Applications share database, possibly use different views of the same database

� No integration layer needed, application data always up to date

� Problems: polling – no notifications, schema evolution, still used!

2

Figure 2: Applications using shared database.

3 Remote Execution – Platform-specific

RPC

� Remote Procedure Call, theory in 1970s, first implementation in early 1982, started
in Unix/C, today NFS, known target

� Client invokes methods of a remote interface on a local stub

– Stub is a RMI-generated proxy object representing the remote implementation

� Server implements remote interface to export methods which can be called remotely

� Object-oriented equivalent of remote procedure call (see later)

� Java – RMI, Python – RPyC, Ruby – Distributed Ruby, Erlang – built into the
language, Go, Rust – Tarpc

Java RMI

� Java-specific technology for distributed systems

� Java Remote Method Protocol

– Wire-level protocol (application layer) on top of TCP

– Binary

� RMI supports primitive types and Serializable

� RMI registry

– Server registers at RMI registry as a provider of remote objects

– Client uses RMI registry to look up remote objects

3

Figure 3: Schema of Java RMI components.

4 Remote Execution – Platform-independent

XML-RPC

� Client-server architecture

� Typically synchronous

� Try it Yourself: https://gitlab.fel.cvut.cz/ear/xmlrpcserver

XML-RPC

� Standard for remote procedure call using XML as message format

� Platform independent

� Over HTTP

XML-RPC Example
Request

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value><int>41</int></value>

</param>
</params>

</methodCall>

Response

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>South Dakota</string></value>
</param>

</params>
</methodResponse>

4

CORBA

� Common Object Request Broker Architecture

� Introduces Middleware (ORB), more complex setup

� OMG standard for language and platform-independent distributed computing
architecture

� Similar to RPC but object-oriented

� Transparent location – client is unaware whether invocation is local or remote

– Also a caveat – local invocation cannot be optimized and has to go through
the whole ORB machinery

� Standards for interface definition, communication protocols, location

CORBA – IDL

Interface Definition Language (IDL)

� Standardized language for specification of interface provided by an object

� Mappings for IDL exist in all major programming languages

� Used to generate Stub/Skeleton code

module HelloApp {
interface Hello {
string sayHello();
oneway void shutdown();
};

};

CORBA – ORB

Object Request Broker (ORB)

� Middleware allowing transparent local and remote invocation

� Handles data serialization/deserialization based on IDL

� Knows location of the actual service implementation

� Is able to handle, e.g., transactions

� General InterORB Protocol – GIOP: Protocol for communications between ORBs

5

CORBA – Java Implementation Example

class HelloImpl extends HelloPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

public void shutdown() {
orb.shutdown(false);

}

// actual function
public String sayHello() {

return "\nHello world !!\n";
}

}

5 Remote Execution – Web Services

What is a web service?

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

� REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

� arbitrary Web services, in which the service may expose an arbitrary set
of operations.

— W3C, Web Services Architecture (2004)

6

SOAP

� Simple Object Access Protocol

� Standard protocol for web service communication

� Combo SOAP + WSDL + UDDI

� XML-based, successor of XML-RPC

� In contrast to CORBA:

– Universal, no language binding (IDL) required

– XML-based (CORBA protocols binary)

– Stateless

– Possibly asynchronous

SOAP

WSDL

� Web Service Description Language

� XML-based description of web service interface

� Clients know how to communicate with web service based on WSDL description

– No generated skeleton or stub needed

UDDI

� Universal Description, Discovery and Integration

� Universal register of WSDL descriptions of SOAP web services

� Simplifies web service discovery

SOAP

SOAP

� Messages consist of:

– Envelope – single per request/response

– (Optional) header – additional information, e.g., timeout, security

– Body – data

– (Optional) Fault – error handling

7

Figure 4: SOAP+WSDL+UDDI. Source:
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=
semanticweb

� Always sent via HTTP POST

� Annotations allowed generating XML schema automatically

� XML schemas allowed generating client API (e.g. in Java)

� Caveats:

– VERY complex (and unclear) security model

– Potentially complex message structure (some information in header insteady
of body)

– Bad opinion about XML, Javascript devs don’t like it

SOAP

DEMO

DEMO (opt)
� Create class

� @WebService

� Deploy to Server (Glassfish or Payara), show generated WSDL

� Use NetBeans to quickly generate Client (in Jakarta EE)

� Deploy, run

8

Figure 5: Source: https://www.researchgate.net/figure/Blockchain-P2P-Network_
fig1_320127088

Peer to Peer (P2P)

� Decentralized architecture where nodes function as servers and clients

� Content distribution, sharing, grid computing

� Types

– Unstructured – no central node, peers discover each other (each peer starts
with a few possible connections and builds a list of other peers)

– Structured – network has a topology, more efficient peer discovery

– Hybrid – combination of P2P and client/server – usually server helps clients
discover other peers, search etc.

P2P

Architecture

Service Oriented Architecture (SOA)

� System is split into self-contained separate units – services

� Services use each other to provide functionality

� Services can be developed separately, use different technologies, be removed or
replaced without affecting the system as a whole

� NOT to confuse with Web Services

9

� Example: SSO, text analysis service

Microservices

� No precise definition exists, for some it is a more advanced (purer) implementation
of SOA

� Software units communicating over lightweight mechanisms (HTTP), deployed
using automated machinery and DevOps

Communication

SOA – Enterprise Service Bus (ESB)

� ESB is a middleware

� Indirection in service communication – decoupling, routing, synchronous or asyn-
chronous communication

� May support multiple protocols – SOAP, REST

� RabbitMQ, Apache Kafka, Apache ActiveMQ

Microservices

� decentralized orchestration, load balancers, cloud tools

– Each service may have configuration of other possible services it can use

� Or single service registry

REST

� Next week

� Based on HTTP, let’s start with a refresher

6 HTTP

HTTP protocol basics

� HTTP is a client-server application-level protocol

� Typically runs over a TCP/IP connection

� Extensible – e.g., video, image support

� Stateless

� Cacheable

� Requires reliable transport protocol – no UDP

10

Figure 6: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

HTTP Request

� Message header

– Request line – identifies HTTP method, URI and protocol version

– Request headers

� Message body

HTTP Response

� Message header

– Status line – identifies protocol version and response status code

– Response headers

� Message body

Figure 7: HTTP request example. Source: https://www.ntu.edu.sg/home/
ehchua/programming/webprogramming/HTTP_Basics.html

11

Request Response

Content � Content-Type � Content-Type
� Content-Length � Content-Length
� Content-Encoding � Content-Encoding
� Accept

Caching � If-Modified-Since � Last-Modified
� If-Match � ETag

Miscellaneous � Cookie � Set-Cookie
� Host � Location
� Authorization
� User-Agent

HTTP Headers
Typical, often used HTTP headers

HTTP Methods

GET

� Used to retrieve resource at request URI

� Safe and idempotent

� Cacheable

� Can have side effects, but not expected

� Can be conditional or partial (If-Modified-Since, Range)

POST

� Requests server to create new resource from the specified body

� Can be used also to update resources

� Should respond with 201 status and location of newly created resource on success

� Neither safe nor idempotent

� No caching

12

HTTP Methods

PUT

� Requests server to store the specified entity under the request URI

� Server may possibly create a resource if it does not exist

� Usually used to update resources

� Idempotent, unsafe

DELETE

� Used to ask server to delete resource at the request URI

� Idempotent, unsafe

� Deletion does not have to be immediate

HTTP Response Status Codes

� 1xx – rarely used

� 2xx – success

– 200 OK – requests succeeded, usually contains data

– 201 Created – returns a Location header for new resource

– 202 Accepted – server received request and started asynchronous processing

– 204 No Content – request succeeded, nothing to return

� 3xx – redirection

– 304 Not Modified – resource not modified, cached version can be used (try
https://javaconferences.org/)

HTTP Response Status Codes

� 4xx – client error

– 400 Bad Request – malformed syntax

– 401 Unauthorized – authentication required

– 403 Forbidden – server has understood, but refuses request

– 404 Not Found – resource not found

– 405 Method Not Allowed – specified method is not supported

– 409 Conflict – resource conflicts with client data

13

– 415 Unsupported Media Type – server does not support media type

� 5xx – server error

– 500 Internal Server Error – server encountered error and failed to process
request

400 Bad Request

� Don’t use it, if possible, provides no information!

� Real-life xample of Bad Request, found after 2 days of finding the bug:

if (!METHODS_TO_IGNORE.contains(rc.getMethod()) && !rc.getHeaders().containsKey("X-
Requested-By")) {

throw new BadRequestException();
}

7 Conclusions

Conclusions

� Most of today’s applications are distributed

– At least tiered – backend and frontend separate

� Most applications are integrated using web services

� Services allow to build systems from independent modules

Coming Next Week

� HTTP

� Currently most popular Web service architecture – REST

The End

Thank You

14

Resources

� https://martinfowler.com/bliki/IntegrationDatabase.html

� M. Fowler: Patterns of Enterprise Application Architecture

� http://xmlrpc.scripting.com/spec.html

� http://www.corba.org/

� K. Richta: Standardy pro webové služby WSDL, UDDI

– https://www.ksi.mff.cuni.cz/˜richta/publications/Richta-MD-2003.pdf

� https://www.slideshare.net/PeterREgli/soap-wsdl-uddi

� http://www.aqualab.cs.northwestern.edu/component/attachments/download/228

� https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf

� https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.
doc/topics/pegl_serv_overview.html

� https://martinfowler.com/articles/microservices.html

15

