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Abstract

This text discusses a few aspects of reflectance models in physi-
cally based rendering:

The first section presents the definition of the bidirectional re-
flection distribution function (brdf) of a surface and its physical
properties.

On a more practical level, the next section discusses models to
represent brdfs and their desired properties in general for Monte
Carlo algorithms.

The third section goes into details about a specific reflectance
model, the modified Phong brdf, with its definition, its prop-
erties and its use. We show how this model can be correctly
integrated in importance sampling schemes for physically based
Monte Carlo rendering algorithms.

The fourth section is devoted to alternative parameter spaces
in which reflectance models can be sampled, either determinis-
tically or stochastically.

The last section discusses an important implementational issue,
more specifically the problem of verifying the implementation
of a reflectance model.
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1 The bidirectional reflection distribution
function

1.1 Definition

The bidirectional reflection distribution function defines the local reflective prop-
erties of a surface. It describes in a physically and mathematically precise man-
ner if a surface is reflective or not, diffuse or specular, etc. The brdf is formally

defined as:

dL,(z,0,)
Li(z,9;) cosb;dw;

f’l‘($1 9;, eo) =

where:
e z — the position on the surface,
e O; = the direction from which the light comes in,
e O, = the direction in which the light is reflected and measured,

e dL,(z,0,) = the differential amount of radiance that is reflected at point
z in the outgoing direction ©,,

e L;(z,0;) = the amount of radiance coming in at point z along direction
©; through dw;,

e cosf; = the cosine of the angle between ©; and the surface normal at point
m’

e dw; = a differential angle around O;.
In this text we make abstraction of the wavelength dependency of the brdf

and only consider monochromatic light.

1.2 Physical constraints
The set of all possible brdfs is constrained by some physical laws:

e Due to the reciprocal nature of the reflection of light the function of the
incoming and the outgoing directions may be interchanged:

.f’r ($, ei, 60) = .f’r ($, 60, 67,)
This property is called the Helmholtz-reciprocity.

e The fraction of light coming in from any direction that is reflected in
the entire hemisphere should be smaller than 1 to ensure conservation of
energy. This fraction is expressed by the total hemispherical reflectivity:

§2:0) = [ £(2,00,0,) cosfodu, <1, V2,0,
Qn

Functions conforming to these constraints can be called physically plausible [1].



2 Reflectance models

2.1 Definition

A reflectance model is a practical representation for some set of brdfs. Any
implementation of a global illumination algorithm uses a reflectance model. It
may be empirical and simple, representing only a limited set of brdfs as in the
classical radiosity method which assumes that all surfaces are Lambertian (i.e.
perfectly diffuse). The model may also be more elaborate and flexible, allowing
for specular and glossy reflections, anisotropy, etc. [2, 3, 4, 5, 6]. It should of
course be physically plausible. If not, algorithms that use it may not converge
to a correct solution or not converge at all.

2.2 Desired practical properties

Monte Carlo algorithms for physically based rendering typically impose the
following requirements on the reflectance model:

e One must be able to evaluate the brdf for a given point on a surface and
given incoming and outgoing directions.

e One should be able to sample the hemisphere at a given point and for a
given outgoing (or incoming) direction, such that the probability density
function (pdf) of the sampled direction follows the normalised brdf times
the cosine factor as closely as possible. Ideally one should be able to
sample according to the following pdf:

fr(z,0;,0,) cosb;
1 fr(2,0;,0,) cosb;dw;

Pdf(ei) = f ~

In practice one often has to use an approximating pdf though. This type
of importance sampling is commonly used in stochastic ray tracing where
new directions have to be sampled recursively at each intersection point [7,
8,9, 10, 11, 12, 13].

e Some algorithms require that brdf (times the cosine factor) can be inte-
grated easily over the hemisphere to obtain the total hemispherical re-
flectivity p. Although the brdf can always be integrated numerically in
principle, more efficient ways are much preferred. This problem is closely
linked to the previous point because the reflectivity is the normalisation
factor of the pdf. The reflectivity also determines whether the model is
energy-conserving or not. One application is Russian roulette where the
relative probabilities to reflect or absorb an incoming ray at a surface de-
pend on it [14, 9, 10, 11, 12, 13]. Another application is the use of an
ambient term times the brdf as a control variate for the rendering equa-
tion [15].



3 The modified Phong reflectance model

3.1 Definition

In 1975 Phong introduced a shading model which returns a colour for a point
on a surface in the presence of some point light sources [16]. While the model
does not have a physical basis and cannot be used as a brdf as it is, a physically
plausible brdf which is very similar to the shading model is commonly used in
rendering algorithms [1]. This modified Phong brdf can be written as the sum
of a diffuse part and a specular part (Fig. 1):

fr(m,ei,eo) = fr,d(m,ei,eo) + fr,s($76i7eo)
n+2

cos"a

1
= kd_ + k.s'
T
where:

e o = the angle between the perfect specular reflective direction and the
outgoing direction. Values larger than 7/2 are clamped to 7/2 in order
not to get any negative cosine values.

e kg = the diffuse reflectivity, ie. the fraction of the incoming energy that
is reflected diffusely,

e k; — the specular reflectivity, ie. the fraction of the perpendicularly in-
coming energy that is reflected specularly,

e n = the specular exponent. Higher values for n result in sharper specular
reflections.

The additional factors in the model simplify the verification that a given drdfis
energy-conserving, as we will demonstrate in the next paragraph.

3.2 Physical constraints

The model should at least conform to the physical constraints discussed earlier:

e It can easily be verified that the modified Phong reflectance model obeys
to the Helmholtz-reciprocity.

e The total hemispherical reflectivity for the Phong model becomes:

p(:L‘., 61) = / fr (:Il, O, 60) cosf,dw,
Qo

1
= / (kd -+ k.s'
Q 7

2
= kgtk, nt2 cos"a cosl,dw,
27[' Qo

= pq+ps(z,0;)

2
nt cos™a) cosb,dw,
27

The latter integral reaches its maximum 27/(n+ 2) for a perpendicularly
incoming direction (where « equals 6,), so:

Pmaz = ka+k;
Conservation of energy is therefore guaranteed iff:

kd"‘kssl
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Figure 1: Polar diagrams of a modified Phong brdf with k; = 0.4, k; = 0.05 and
n = 50 for various incoming angles.



3.3 Desired practical properties

We will now investigate how the modified Phong brdf meets the requirements
in order to be of practical use:

e As the model is given in a closed form it can be evaluated directly for a
specific point and an incoming and an outgoing direction, thereby satisfy-
ing the first condition.

o The brdf times the cosine factor cannot be used as a pdf. ‘Hit or miss’
sampling or rejection sampling will usually be ineflicient, especially if there
is a strongly peaked specular part. It is more effective to sample the diffuse
part and the specular part of the brdf separately. Even this approach is
difficult to implement correctly [7]. We propose a mathematically correct
procedure in Section 3.3.2.

e The brdf times the cosine factor cannot be integrated analytically over
the hemisphere because of the specular part. Firstly, the combination of
the cosa and cosf factors already precludes an exact analytical formula.
Secondly, the cos™a factor of the specular lobe may have a part below the
surface and a part which is clamped to 0. Excluding these regions from
the domain of integration causes some intricate integration boundaries, no
matter which axes are used. We therefore estimate it by means of another
Monte Carlo process, which is explained in Section 3.3.1.

3.3.1 Integrating the modified Phong brdf

Analytical integration of the specular part of the total hemispherical reflectivity
is impossible. Monte Carlo integration which is optimised through importance
sampling may therefore be a viable alternative. We propose to take one or more
samples according to the following pdf:

cos" o

pdf(0,) = "1

The primary estimate for the specular reflectivity is 0 if a direction below the
surface is sampled. If a direction above the surface is selected the estimate
becomes:

s ,67: — k_s 00
(pa(2, ) 2T o

If % cosf, > 1 the estimate may conflict with the condition of energy conser-
vation. In that case 1 will be a more accurate estimate.

3.3.2 Sampling the modified Phong brdf

We propose a sampling scheme for the modified Phong brdf which employs Rus-
sian roulette and importance sampling. It is suited for path tracing and similar
Monte Carlo algorithms. The Russian roulette ensures that the recursion stops
at some point. The importance sampling follows the brdf as closely as possible.
Our first concern is correctness of the technique: the expected value of the es-
timate of the integral being computed should be the actual value. Our second
concern is efficiency: importance sampling should be exploited maximally in
order to minimise the variance.



We will demonstrate the sampling technique on a typical integral as it ap-
pears in the rendering equation:

L(z,0,) = / fr(2,0;,0,)L(y, ©;) cosb;dw;
oo

1
= (ka= + ko>
™

2
+ cos"a)L(y, ©;) cosb;dw;
Qzt a

Rewriting the integral already reveals the way in which it can be sampled:

1 k
L(z,0,) = pq / [= cos;] [-2L(y, ©;)] duw;
ot T Pd

n+1 n+ 2k,
s "a] [———L(y, ©;) cosb;] dw;
+ »p /9;1[ 08 o] [’n+1ps (y,©:) cosb;] dw

1
= pd / [= cosb;] L(y, ©;) dw;
QT

£

n+1 n+ 2k,
s "a] [———L(y, ©;) cosb;] dw;
+ »p /9;1[ 5 €08 o] [’n+1ps (y,©:) cosb;] dw

A first stochastic variable determines the type of reflection. It is sampled
uniformly over the interval [0, 1] and the following actions are taken accordingly:

o 0 < ¢ < pg: take a diffuse sample and compute its contribution,
o pg < &< pg+ ps: take a specular sample and compute its contribution,
e pg+ ps < & < 1: the contribution is 0.

This type of importance sampling ensures that the most appropriate amount of
work is put into each type of reflection (lacking any further information about
L(y,©;)). Because the actual value of p, cannot be computed analytically,
an estimate (p;) has to be used, as described above. The rewritten integral
expression shows that any value can be used actually, so alternatively one can
simply use a value of k;. The expected value will remain correct, but the
variance may change slightly as a result.
Diffuse and specular samples are then handled as follows:

e A diffuse sample can be sampled according to the cosine distribution:

1
pdf(©;) = — cosb;
T
The estimator for the integral then becomes:
(L(=2,0,)) = L(y, ©:)

o It is impossible to sample the complete specular part of the brdf directly
because of the cosine factor. But it is feasible to sample according to the
cos™ « factor, as we have done to compute the specular reflectivity:

1
pdf(9) = “ = cos"a
We then have to adapt the estimator accordingly. If a direction below
the surface is sampled the weight is 0. One can see this as sampling a
direction for which the incoming radiance is 0. If the direction points
above the surface the estimator becomes:

n+2 kg

(L(z,0,)) = n——H@ cosb;



The pdf ensures at least that samples are chosen in the specular lobe.
This presents a major improvement over some sort of uniform sampling,
because the lobe may be very sharp for highly specular surfaces which
have a large specular exponent.

Sampling directional distributions

In the previous paragraphs two types of pdfs for directions were used. The space
of directions in 3D-space is two-dimensional, so these pdfs can be sampled by
selecting 2 uniform stochastic variables £; and £; over the interval [0, 1] and
transforming them appropriately:

e For pdf(©) = % cosf the direction © can be specified in terms of (6, ¢),
where 4 is the polar angle with the surface normal and ¢ is the azimuthal
angle:

6,¢) =( acos\/a, 27€3)

In terms of direction vector coordinates (z,y, z) this becomes:
(z,9,2) = (siné cosg, sinb sing, cosf)

= (v/1—¢& cos(2m€r), /1 — &1 sin(27E2), \/5_1)

e For pdf(©) = % cos™a, which is actually a generalisation of the previous
pdf, the direction © can be specified in terms of («, ¢), where:

1
(a, ¢) = ((acoséft, 27E2)
In terms of direction vector coordinates (z, y, z) this now becomes:

(z,9,2) = (sina cosg, sina sing, cosa)

2 2 1
= (V1—-&71 cos(2m€2), V1 — &7 sin(27Es), &71)



4 Parametrisations of the hemisphere

Consider the integral expressing the total hemispherical reflectivity:
(2,0) = [ £:(2,04,,) cosddu,
Q

Related integrals and integral equations such as the rendering equation are
usually very similar, just containing an additional —-mostly unknown- factor such
as the radiance function. There are a number of alternative ways to parametrise
the direction ©, in this integral. The parametrisation has a large influence on
the efficiency of any deterministic or stochastic sampling scheme. In fact, one
can easily show that in Monte Carlo integration performing importance sampling
in one parameter space is equivalent to performing uniform sampling in another
parameter space. Transformation to a parameter space where the integrand is
smooth is preferable, as smoother functions are easier to integrate than wildly
varying functions.

e In the classical (8, ¢) parameter space (Fig. 2) this integral can be written
out as:

2 pm/2
p(z,0;) = / / fr(2,0;,0,) cosb, sinb,db,d¢
o Jo

Even without considering the specular peak of the brdf one can see that
the function has a strong relative variation over the domain, descending
to 0 for § = 0 and 6 = /2.

e In the (c,¢) parameter space (Fig. 3) where (c,¢) = (1 — cosf, ¢) the
integral is written out as:

27 1
o(z,0:) = /0 /0 f1 (2,05, 0,)(1 — c) dedd

Equally sized elements in the parameter space correspond to equally sized
spatial angles. The integrand no longer goes to 0 for § = 0 (¢ = 0), but
still descends to 0 for 8§ = 7/2 (¢ = 1).

e In the ({1, £2) parameter space (Fig. 4) where (6, ¢) = (acos/1 — &1, 27E3)
= (asiny/€1, 27€3) the integral becomes:

1 1
plz,0:) = = /0 /0 £.(2, 05, ©,)dé1des

This parametrisation has the advantage that equally sized elements cor-
respond to equally sized spatial angles weighed by the cosine term. As a
result a perfectly diffuse part of a brdf will appear as a constant part in
the integrand which can be sampled perfectly by a single sample.

e Yet another alternative is the (z, y) parameter space (Fig. 5) which is also
used in the Nusselt analog. Directions are determined by their projections
in the (z,y) plane: (z,y) = ( sinf cos¢, sinf sing), or the inverse trans-
formation: (6, ¢) = ( asiny/z% 4 y?, atan2(y,z)). This yields an integral

over the unit disc:

p(m,@i)://Ofr(m,ei,eo)dmdy



As in the (1,€2) parametrisation equally sized elements correspond to
equally sized spatial angles weighed by the cosine term. Although the
integration domain is more complex, this parametrisation has the inter-
esting property that it is contiguous, in the sense that neighbouring points
in parameter space map to neighbouring directions.

The above parametrisations do not depend on the brdf. For more specular
brdfs though the specular peak may easily become very large and thin. Sampling
then becomes ineffective in these schemes because of the quick variations of
the integrand. Alternative parametrisations such as the one used implicitly in
the importance sampling technique for the modified Phong reflectance model
explained in Section 3.3.2 are then much preferred.

10
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(c, ) parameter space
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a hemisphere in a polar diagram and the resulting integrand with a Phong brdf
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Figure 5: The (z, y) parametrisation with its parameter space, its mapping onto
a hemisphere in a polar diagram and the resulting integrand with a Phong brdf
plotted as a function of z and y.
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5 Verifying the implementation of a reflectance
model

An implementation of a brdf model will basically contain the three functions
which have been outlined in Section 2.2. They respectively evaluate, sample
and integrate the model for a given set of input parameters (the parameters de-
scribing the surface properties at a given position and the incoming direction).
Experience has shown that is is very easy to make mistakes while implement-
ing even the simplest model. A slip of attention or a typing error may have a
substantial influence on the results even though images created using the imple-
mentation may look acceptable. The physical constraints, Helmholtz-reciprocity
and conservation of energy, can be tested easily with some random input param-
eters. We suggest an additional test which helps finding contradictions between
the three basic functions.

The idea is to compute the fractions of the power that are reflected through
a set of solid angles, for some incoming direction. These partial reflectivities
have to be the same when computed using different techniques. The partial
reflectivity through a solid angle Qj is:

Apg (:Il, 61) = fr (:Il, 0, 60) cosf,dw,
AQy

We have chosen to work in the (z,y) parameter space, because diagrams in
this space are easy to interpret and conversion between an (z,y, z) direction
vector and the (z,y) parameters is straightforward. The outgoing solid angles
ASQ)y, are chosen to correspond to the squares of size Az X Ay in a uniform grid in
the (z,y) parametrisation, as in Fig. 5. For these outgoing solid angles AQj the
partial reflectivities Apy can be evaluated using two alternative Monte Carlo
techniques. Onme technique uses the sampling function of the implementation
and the other technique is based on the evaluating function. In order for the
implementation to be consistent the results have to match within the accuracy
of the computations. They can easily be visualised in a three-dimensional graph
on the grid.

e A first primary estimator for the fluxes uses the sampling function of
the implementation. All fluxes are computed at the same time. The
subcritical pdf implemented in the function samples a direction over the
entire hemisphere:

spdf(@o) =f ($7 9, eo) cosb,
The correct estimator is then assigned to the appropriate solid angle:
(Apr(z,0;)) =27

Averaging several primary estimators yields more accurate secondary es-
timators for all the partial reflectivities (Fig. 6). The variance of this
estimator is high because each partial reflectivity on its own is effectively
computed using ‘hit or miss’ sampling. For more specular brdfs it may
be increasingly efficient however, as alternative sampling approaches will
usually fail to capture the specular peak adequately.

e The alternative primary estimator uses the evaluating function of the im-
plementation. All partial reflectivities are computed in turn. The uniform

15



pdf over the appropriate grid square in the (z,y) parameter space for out-
going solid angle Ay is:

1
pdf(p,) = Azly

The sampled point p, is projected back onto the hemisphere to obtain the
outgoing direction ©,. If there is no corresponding direction the estimator
is 0. Otherwise the corresponding estimator can be evaluated as:

<Apk (:L‘., 61)) = AzAyf, ($7 9;, eo)

For perfectly diffuse surfaces the brdf is a constant and the estimator is
perfect. Alternatively several primary estimators will yield more accurate
secondary estimators (Fig. 7).

o After these computations the result of function which returns the total
reflectivity p(z, ©;) can be checked by computing the estimate:

(p(z,©:)) = Y _(Api(z, 02)

k

where the estimates of the partial reflectivities (Apg) have been computed
using one of the two algorithms above.

Of course these verification techniques can never prove the correctness of
the implementation because they can only verify the results for a few random
incoming directions. Nevertheless, they have already proven to be helpful in
practice for demonstrating implementational errors.

6 Conclusion

In this text we have discussed some physical and practical properties of bidirec-
tional reflection distribution functions and their models. We have demonstrated
how the modified Phong reflectance model can be applied in a mathematically
correct way for physically based rendering using Monte Carlo techniques. An
overview of some alternative parametrisations of the directions in the hemi-
sphere shows why some parametrisations and importance sampling techniques
may be preferable over others. We have presented a verification technique in one
of these parameter spaces which may be helpful for finding implementational
errors.
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