Search trees

« Red-Black Tree
« Splay Tree
e 2-3-4 Tree

Skip list

Random level 8

This scheme corresponds

/

More general randomness

Choose a fraction p between 0 and 1.
Rule: Fraction p of elements with level k pointers

to flipping a coin that has

p chance of coming up heads,
(1-p) chance of coming up tails.

will have level k+1 elements as well.

On average: (1-p) elements will be level 1 elements,
(1 —p) - p .12 elements will be level 2 elements,
(1—p) - p? (1-pY*3 elements will be level 3 elements, etc.
_ /
x| Ix] X Ix]Ix] xdxdDxdBxd D dxdxdxd xdxdxd xdx x| X

(Example of an experimental independent levels calculation with p = 0.33.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

I Skip list

This scheme corresponds

/ to flipping a coin that has
p chance of coming up heads,
Element level (probability): (1-p) chance of coming up tails.
(1-p) level 1
1-p)p level 2
R o 1
(1-p)-p*¥ 1 level k z k=
p)-p (k+1) -x 1=
=
% 1 _ 1=
Sim(l-p)p*t==1
1 1 .
— 1 — 2, —1 — 1.33
Expected number of pointers per element; 1-3 1—

Oo._.k_l__.oo .kzl—pzl
kZlk 1-p)-p" " =0-p) kZ;)(k+1)p A=p)2 1-7p

_

/

Pokrocila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL EVUT, 12/14

Experiment with Lehmer generator
X+ = 16807 X, mod 231-1
seed = 23021905 // birth date of Derrick Henry Lehmer

f N\ 4)
N I H . Coin flipping:
ﬁﬁﬂﬁﬁﬂﬂﬂ:ﬂﬂjﬁﬂﬂﬂjﬂﬂﬂﬂﬂjﬂﬂ—DEEE PRINg
(Xn >>16) & 1
Head =1

[128 nodes

A J J
4)
Level 1 2 3 4 5 6 7 8 9 ..
Number of nodes Expected 64 32 16 8 4 2 1 1/2 1/4 ..
Actual 60 36 17 5 7 1 1 1 O

L)

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Data structures and algorithms

Petr Felkel

Exploited in Advanced Algorithms 2012-2020

10.12. 2007

Red-Black tree

Approximately balanced BST
hrg <2 - hgsr (height <2 x height of a balanced tree)

Additional bit for COLOR = {red | black}
nil (non-existent child) = pointer to @ node

¢ &

leaf — Inner node

6

Red-Black tree

A binary search tree is a [=¢)- [ES®tree if:

1. Every node is either or (9.

2. Every leaf (nil) is [ESS.
3. If a node is [}, then both its children are [JESS .

4. Every simple path from a node to a descendant leaf
contains the same number of [ESS nodes.

5. Root is [EES -

Black-height bh (x) of a node x is the number of
nodes on any path from x to a leaf, not counting x

Red-Black tree

Black-height bh (x) of a node x is the number of [NESS
nodes on any path from x to a leaf, not counting x.

black height black height bh(T) =3
bh (x) height h(T) = 6

Binary Search Tree -> RB Tree

Y s black height bh(T) = 4
h(T) = 4

12

3 5 7 9 11 13 15

nil @ nil g nil @ nil § nil @ nil § nil @ nil B nil ® nil § nil ® nil Kk nil § nil B nil B nil

DSA 9

Binary Search Tree -> RB Tree

black height bh(T) =3
h(T)=4

PATITLTA]

DSA 10

DSA

Binary Search Tree -> RB Tree

3 black height bh(T) =3

11

Binary Search Tree -> RB Tree

2 P black height bh(T) = 2
h(T) = 4

1

nil @ nil g nil @ nil § nil @ nil § nil @ nil B nil ® nil § nil ® nil Kk nil § nil B nil B nil

DSA 12

Red-Black tree

Black-height bh(x) of a node x
* |s the number of black nodes on any path from x to a leaf, not
counting x

 Is equal for all paths from x to a leaf

 For given his bh(x) Iinthe range fromh/2 to h
— if 2 of nodes red => bh(x) = ¥z h(x), h(x) = 2 Ig(n+1)
— If all nodes black => bh(x) = h(x) = Ig(n+1)

Height h (x) of a RB-tree rooted in node x
 Is at maximum twice of the optimal height of a balanced tree
 h=<2lg(n+1) h € ©(Ig(n))

DSA

13

RB-tree height proof icomen, p.2s4
A red-black tree with n internal nodes has height h at most 2lg(n+1)

Proof 1. Show that subtree starting at x contains at least 2°"®)-1 internal nodes.
By induction on height of x:
l. If xis a leaf, then bh(x) = 0, 2°"®)-1 = 0 internal nodes /l... nil node
ll. Consider x with height h and two children (with height at most h -1)
— X's children black-height is either bh(x) -1 or bh(x) I/ X is black or red
— Ind. hypothesis: x's children subtree has at least 2°"®)-1 -1 internal nodes

— So subtree rooted at x contains at least
(20h(0-1 -1) + (2bhX)-1 -1) + 1 = 2PhX) - 1 internal nodes => proved

Proof 2. Let h = height of the tree rooted at x
— min %2 nodes are black on any path to leaf =>Dbh(x)=h/2
— Thus, n22"2-1<=>n+122"2<=>|g(n+1)=h/2
— h < 2Ig(n+1)

DSA 14

RB-tree Search

Search is performed as in simple BST, node colors do not
Influence the search.

Search in R-B tree with N nodes takes
1. In general -- at most 2*Ig(N+1) key comparisons.
2. In best case when keys are generated randomly and uniformly
-- cca 1.002*Ig(N) key comparisons,
very close to the theoretical minimum.

DSA 15

Inserting in Red-Black Tree

Color new node x Red
Insert it as In the standard BST ‘5

p — @p
If parent p is Black, stop. Tree is a Red- Black tree. (.\ g\
If parent p is Red (3+3 cases)... P—r 1

‘ \
resp. ‘*
While x is not root and parentis Red

If X’s uncle is Red then case 1 /[propagate red up
else {if x is Right child then case 2 // double rotation
case 3 } // single rotation
Color root Black

DSA 16

Inserting in Red-Black Tree

x’s parent is Black

Insert 1

1(1

A

If parent is Black, stop. Tree is a Red-Black tree.

DSA

17

Inserting in Red-Black Tree

x's parent is Red
x's uncle v is Red

% is a Left child LOOp: X = X.p-p

Case la

Recolor

1 2 bh(x)
Increased by one

DSA 18

Inserting in Red-Black Tree

x's parent is Red
x's uncle v is Red
x IS a Right child

Loop: X = X.p.p

Case 1b

Recolor

2 3 > 3 bh(x)
x is node of interest . increased by one

DSA 19

Inserting in Red-Black Tree

x's parent is Red
x's uncle vy is Black
x 1S a Right child

2 3} 1 2 transform to Case 3

xisaRightehild .o\ hole is Black
DSA 20

Inserting in Red-Black Tree

x's parent is Red
x's uncle v is Black

Terminal case, tree

x IS a Left child is a Red-Black tree
Case 3

\ Recolor B,C
¥ Rrot(xpp) X A

-
.
4
/
1
1 1
|
1 1
\ \
AY , AY
\ N /
\, ,/ A ’
1
1
1
3 4 ' 5
w 1
N 1
S
N]
N 1
N
~ 1
~ 1
N I
N
N 1
N
N 1
S 1
N
N]
AN I
1

x IS a Left child <'s uncle is Black
DSA 2

Inserting in Red-Black Tree

Cases Right from the grandparent
are symmetric

DSA 22

RB-INSERT(T, x)

P[x] = parent of x
; I{i@igfﬂg” left[x] = left child of x
3 while x # root[T] and color[p[x]] = RED y = uncle of x
4 do if p[x] = lefi[p[p[x]]]
5 then y « right[p[p[x]]] Red uncle y ->recolor up
6 " if color[y] = RED I
7 then color[p[x]] — BLACK > Case 1
8 color[y] «— BLACK > Case 1
9 color[p[p[x]]] — RED > Case 1
10 _ x — p[p[x1] > Case 1 /
11 (else if x = right[p[x]])
12 then x — p[x] > Case 2
13 L [LEFT-ROTATE(T, x) > Case 2)
14 (color[p[x]] «— BLACK > Case 3)
Is color[p[p[x]] — RED > Case 3
16 L RIGHT-ROTATE(T, p[p[x]]) > Case 3)
17 else (same as then clause
with “right” and “left” exchanged)
18 color[root[T]] «— BLACK [Cormen30]

DSA 23

Inserting in Red-Black Tree

Insertion in ®(log(n)) time
Requires at most two rotations

DSA

24

Deleting iIn Red-Black Tree

Find node to delete

Delete node as in a regular BST
Node y to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop
Assume we delete a black node

Let x be the child of deleted (black) node y XY’/_> -
If x Is red, color it black and stop / \

while(x is not root) AND (x is black)
move x with virtual black mark through the tree XK/_' /4
(If x is black, mark it virtually double black o)

//Inote that the whole x's subtree lost 1 unit of black height
DSA 25

Deleting in Red-Black Tree

while(x is not root) AND (x is black) {
/[move x with virtual black markathrough the tree
// just recolor or rotate other subtree up (decrease bh in R subtree)
If (sibling is red)
-> Case 1. Rotate right subtree up, color sibling black, and
continue in left subtree with the new sibling
If (sibling is black with both black children)
-> Case 2: Color sibling red and go up
else // black sibling with one or two red children
If(red left child) -> Case 3: rotate to surface
Case 4: Rotate right subtree up

DSA 26

Deleting in R-B Tree - Case 1

x is the child of the physically deleted black node => double black
x’s sibling w is red

(x’s parent must be, black)

\ Case 1
A Recolog x.p, w) +

w Lrot(x.p) .

X
£y % \‘
1 2
3 4 5 6
x stays at the same black height continue

[Possibly transforms to case 2a and terminates — depends on 3,4]

DSA 7

Deleting in R-B Tree - Case 2a

x’s sibling w is black ..
x’s parent is red
new X
. ;’ Recolor(w) +
m black up_
3 4 5 6

x’s sibling left child is black |
Terminal case, tree IS Red-BIack tree STOP

x’s sibling right child is black"'.l

' Case 2a

lllllllll
....

Note that A's subtree had less by 1 black height than D's subtree

DSA 28

Deleting In R-B Tree - Case 2b

x’s sibling w is black .

x’s parent is black

x’s sibling left child Is black
x’S sibling right child is black.|

e / Case 2b

Recolor(w) +
black up>

3 4 5 6 3 4 5 6

Decreases x black height by one continue with new x
Note that A's subtree had less by 1 black height than D's subtree

DSA 29

Deleting in R-B Tree - Case 3

x’s sibling w is black

x’s parent is either

x’s sibling left child is red // impossible to color w red
x’s sibling right child is black

Case 3

w Recolor(w.l, w) +

Rrot(w)

Transform to case 4 continue
x stays at same black height

DSA 30

Deleting in R-B Tree - Case 4

x’s sibling w is black ,

x’s parent is either

x’s sibling left child is'either

x’s sibling right child is red // impossible to color w red

Case 4

‘\' W colbr(w) = color(w.p) +
'Recolor(w.r) +

v Lrot(x.p) R

] E
3 4 5 6 1 2 3 4
Terminal case, tree Is Red-Black tree STOP

(D inherits the color of B)

DSA 31

DSA

Deleting In Red-Black Tree

RB-DELETE(T, z)

(1

if left[z] = nil[T] or right[z] = nil[T]
then y e Zz
else y — TREE-SUCCESSOR(z)

Y

if left[y] # nil[T]
then x — lefi[y]
else x « right[y]

AN

NV

plx] < ply]

AN

O 0o O\ L K| D

[
— O

(
(S
R

if p[y] = nil[T]
then root[T] — x
else if y = left[p[y]]
then lefi[p[v]] — x
else right[p[y]] — x

(13
14

15

if y #:z
then key[z] — key[y]

> If y has other fields, copy them, too.

AN

16

17

if color[y] = BLACK
then RB-DELETE-Fixupr(7, x)

18

return y

Notation similar to AVL
z = logically removed
y = physically removed
X =y’s only child

[Cormen90]

32

RB-DELETE-FixXuPp(7, x)

1

O O\ WL A~ W

11
12
13
14
15
16
17
18
19
20
21
22

23
DSA

while x # root[T] and color[x] = BLACK
do if x = left[p[x]]
then w — right[p[x]]

X =
p[x] =

child of removed node
parent of x
w =sibling of x

/~if color[w] = RED ‘R\subtree up
then color[w] «— BLACK > Case 1 Check L
color[p[x]] < RED > Case 1
LEFT-ROTATE(T, p[x]) > Case 1
w «— right[p[x]] >Casel)
((if color[left{w]] = BLACK and color[right{w]] = BLACK) | Recolor
then color[w] «— RED > Case 2 Black up
x « p[x] > Case2)| Goup
. else(if color[right[w]] = BLACK N | inner R-
then color[left{w]] — BLACK > Case 3 subtree up
color[w] < RED > Case 3
RIGHT-ROTATE(T, w) > Case 3
L w — right[p[x]] > Case 3
(color[w] — color[p[x]] > Case 4 | [Rsubtreeup
color[p[x]] — BLACK > Case 4 stop
color{right[w]] <« BLACK > Case 4
LErFT-ROTATE(T, p[x]) > Case 4
L \X «— root[T] > Case4))
else (same as then clause
with “right” and “left” exchanged)
[Cormen90]

color[x] < BLACK

33

Deleting in R-B Tree

Delete time is ®(log(n))
At most three rotations are done

DSA

34

R-B Tree vs. AVL Tree

« Faster insertion and deletion operations (fewer rotations are
done due to relatively relaxed balancing).

* Requires only 1 bit of information per node.
« AVL trees provide faster lookups.

=> Red-Black Trees are used in most of the language libraries like
map, multimap, multiset in C++ whereas AVL trees are used In

databases where faster retrievals are required.

DSA 35

KFizovkova pauza

inicialy o .
ks e mezinarodni
puska gerveno Seské unavim mékky ceskeho iﬁ/rg?esl‘;e,”?ek\)’ obejda snacka
doprovod
manzelky
Slechtice
1. Cast
tajenky
staré Roosveltovy
identi- zajmeno inicialy uSlechtily
fikator programo- tlak krve kov
vaci jazyk (zkr.)
byvaly slovenska
francouzsky rockova
tenista skupina
popévek
3 2. Cast
znacka tajenky
Tesly
tézky vodik
patfici :
obyvateli _ bud
napomocny

raje

D DD o gy o

.. Splay tree, 2--4 tree B Marko Berezovsky L I

Radek Marik
PAL 2012

5 2 j j ii ’ Red-Black Representation
of 4-nodes °

A

(W] 24 Tree VS Red-Black Troe
Aerl

! L :
AAANTIA 72D -

; F',_
A%A A:;A
500

g
B g7
ofwod L Doo

' A
» v
“) g
PES e N

pp.149-58.
| [2]
32 (3), 1985, pp.652-86.
[3]
_ Department of Computer Science, http://benpfaff.qra/napers/libavl.odf

Weiss M. A., Data Structures and Algorithm Analysis in C++, 3" Ed., Addison Wesley, §4.5,
Daniel D. Sleator and Robert E. Tarjan, "Self-Adjusting Binary Search Trees", Journal of the ACM

Ben Pfaff: Performance Analysis of BSTs in System Software, 2004, Stanford University,

)_/

L See also PAL webpage for references

Pokrocila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL EVUT, 12/14

(_Splay Tree - Description

4)
AVL trees and red-black trees are binary search trees with logarithmic height.
This ensures all operations are O(In(n))

An alternative idea is to make use of an old maxim:

Data that has been recently accessed is more likely to
be accessed again in the near future.

Accessed nodes are splayed (= moved by one or more rotations)
to the root of the tree:

Find: Find the node like in a BST and then splay it to the root.
Insert: Insert the node like in a BST and then splay it to the root.

Delete: Splay the node to the root and then delete it like in a BST.

\Invented in 1985 by Daniel Dominic Sleator and Robert Endre Tarjan. y

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Description

. Properties overview

-
Splay tree

- A binary search tree.

- No additional tree shape description (no additional memory!) is used.

- Each node access or insertion splays that node to the root.

- Rotations are zig, zig-zig and zig-zag, based on BST single rotation.

- All operations run times are O(n), as the tree height can be ®(n).

- Amortized run times of all operations are O(In(n)).

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Splay Tree - rotation 3
. [Zig rotation]

Zig rotation is
the same as a
rotation (L or

R) in AVL tree.

)

Afected nodes
and edges

The terms "Zig" and "Zag" are not chiral, that is,
they do not describe the direction (left or right) of the actual rotations.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

B Splay Tree - rotation 4

{ . . _ \
f | Z19 - zig rotation | h

\,

Note that the topmost node might be either the tree root or the left or the right child
of its parent. Only the left child case is shown. The other cases are analogous.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Splay Tree - rotation 5

{ . . _ \
f | Z19 - zig rotation |)

“

(87 ’ [R rotation]
C

Both simple rotations are performed at the top of the current subtree,
the splayed node (with key A) is not involved in the first rotation.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Splay Tree - rotation 6

r { Zig - zag rotation])

* *

Note that the topmost node might be either the tree root or the left or the right child
of its parent. Only the left child case is shown. The other cases are analogous.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - rotation Step-by-step scheme

[]] 1
| £19 - zag rotation |

[z

ig-Zag rotation is identical to the double (LR or RL) rotation in AVL tree.]

Pokrocila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

n Splay Tree - Insert 8

o :D

o

Note the extremely inefficient
shape of the resulting tree.

Pokrocila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL EVUT, 12/14

= Splay Tree - Find 9

) Find operation)
Find 1 :
Is of ®(n) complexity
in this case :-(.

{Key 1 is the deepest

key in the tree.

&

Scheme - Result of the most
eammm unfavourable Find operation s

—

Q

°

Q
O

%O.

O

O

—— Note that the tree height is
_roughly halved. H —» (H + 3) / 2

J:u

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Splay Tree - Find

 Example a1

r

—

Key 3 is the deepest J

key in the tree.

10

N
The Find operation would be
again of ~n complexity. :-(

Pokroéila Algoritmizace, AdM33PAL, ZS 2012/2013, FEL CVUT, 12/14

= Splay Tree - Find | Example _[§12

(

®<§t

7 \

mm——— Note the relatively favourable shape of the resulting tree.

O Cg* ’@;0
6 5 O°
S e ‘ S @ €

Scheme - Progress of the two most unfavourable Find operations.

Pokrocila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL EVUT, 12/14

=
: fDe lete(k) | N
1. Find(k); \ J I/ This splays k to the root
2. Remove the root; I/ Splits the tree into L and R subtree of the root.
3.y = Find max in L subtree; // This splays y to the root of L subtree)
4. y.right = R subtree;)
1.Find k 2. Split = remove root
y = maximum key in L
= closest smaller value to k
3. FindMax(L) 4.y.right=R ()
R
. y,

Splay Tree - Delete

[Simplo scheme a3

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

B Splay Tree - Performance 16

7

Advantages:

— The amortized run times are similar to that of AVL trees and red-black
trees

— The implementation is easier
— No additional information (height/colour) is required

Disadvantages:
— The tree will change with read-only operations

D

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

2-3-4 tree 18

~
A 2-3-4 search tree is structurally a B-tree of min degree 2 and max degree 4.

A node is a 2-node or a 3-node or a 4-node.

If a node is not a leaf it has the corresponding number (2, 3, 4) of children.

All leaves are at the same distance from the root, the tree is perfectly balanced.)

2-node ..) r3-node “““) r4-node ---------)
2133 Bele71
AN A - AAADN
i1

21|33 67

30 37 58/62(71 79|89

izo 24|25[25 i32 36 %39|4o {1 *60 64| [68|]78 85|86\92

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

I 2-3-4 tree 19

[Find: As In B-tree J
4)

Insert: As in B-tree: Find the place for the inserted key x in a leaf and store it
there. If necessary, split the leaf and store the median in the parent.

Splitting strategy

Additional insert rule (like single phase strategy in B-trees):

In our way down the tree, whenever we reach a 4-node (including a leaf),

we split it into two 2-nodes, and move the middle element up to the parent node.
This strategy prevents the following from happening:

After inserting a key it might be necessary to split all the nodes going from
inserted key back to the root. Such outcome is considered to be time consuming.

Splitting 4-nodes on the way down results in sparse occurrence of 4-nodes in the
tree, thus the nodes never have to be split recursively bottom-up.

v,

(Delete: As In B-tree]

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

2-3-4 tree
N

Splitting strategy 20

f

-,
Split node is the root.

Only the root splitting

Lincreases the tree height

y

~

s

Split node is the leftmost or
the rightmost child of either
a 2-node or a 3-node.
(Only the leftmost case is
shown, the righmost case
IS analogous)

N

Split node is the middle]

child of a 3-node.

[The node being split cannot be a child of a 4-node, due to the splitting strategy.]

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

. Insert example |

(Insert keys into initially empty 2-3-4tree:. SEARCHINGKLM

(

[Insert S [Insert E) {Insert A }

B — Esl — INBE

{Insert R) E {Insert C) E
LG S B A

[Insert H;/E (Insert I) TE R
AlC \H R[S |:> T‘A{ H[1] [s

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

g e

Insert example |

nsert | TE = (Insert N) TE -
% T/ HITT IS |:> T/ H{I|N] [S
TE = [Insert K) |

(nsertG}
% T/G

\T |:> E
NJ 1S AlC| |G

|
7

(Insert L) /E

E

A

C\GH

K

Insert M)/E\L

R

e

H

M| N

[Note the seemingly unnecessary split of E,I,R 4-node during insertion of K.

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

2-3-4 Tree

[Szoexample __Ja24

r

Results of an experiment with N uniformly distributed random keys
from range {1, ..., 10° } inserted into initially empty 2-3-4 tree:

.
e
N | Tree depth 2-nodes 3-nodes 4-nodes
10 2 6 2 0
100 4 39 29 1
1000 7 414 257 24
10 000 10 4 451 2 425 233
100 000 13 43 583 24 871 2 225
1 000 000 15 434 671 248 757 22 605
10 000 000 18 4 356 849 2 485 094 224 321

_

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

Relation to R-B tree

Relation of a 2-3-4 tree to a red-black tree

_
X X
a) (b @@
XY .
(a]
a) (b) (c ‘@@
X[V[Z ’
—
aﬂcd oRoNNoR0
Y,

Pokroéila Algoritmizace, A4M33PAL, ZS 2012/2013, FEL CVUT, 12/14

