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Tiny piglet Getting strong and backwards Reflected in water

Inspecting its tail Painted by abstract artist Serialized in Java file



Isomorphism motivation
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Triangle outside
the square

Triangle inside
the square

Should we consider 
these two schemes 
to be identical 
regardless of the 
pictures geometry?  

Wiew B

Wiew A

Wiew B

Wiew A One triangle and 
three quadrilaterals
inside a triangle.

Two triangles and 
two quadrilaterals
inside a rectangle.  

Different  representations 
(views) of the same 
original structure.

Wiew A

Wiew B



Isomorphism informally
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Geometry does not help to confirm the fact that different representations (pictures, 
descriptions…) correspond to the same structure. 
On the contrary, it rather seems to obscure the fact quite easily:

G1 and G2 do not depict the same structure, while G1 and G3 do.

G1 G2 G3

The structure, in this context, is the set of nodes and the set of edges between them. 



Isomorphism informally
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Two graphs are called isomorphic to each other when, in fact, they are absolutely  the 
same graph. They only pretend to be different (if they pretend it at all). 

G1
G2 = ( {a,b,c,d}, 

{ {a,b}, {b,c}, {c,a}, {b,d} } )
// Set of nodes and set of edges

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

// Adjacency matrix of G3

G3:

G4
G5 is an undirected 
simple graph consisting 
of 4 nodes and 4 edges.
It contains a node of 
degree 1.
// This defines G5 
unambiguously. // Posh garden       

// scheme

// Plain vanilla 
// scheme

Clearly,   G1, G2, 
G3, G4, G5,
are all pairwise  
isomorphic
to each other. 

Each time 
it is the same 
graph.



Isomorphism formally
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Two graphs, G1 and G2, are called isomorphic to each other when  there exists 
a one-to-one correspondence between  the nodes of G1 and the nodes of G2. 
Additionally, this correspondence between the nodes also  completely mirrors the 
information about the edges in both graphs, in the sense:

There is and edge between x and y in G1
if and only if

there is an edge between nodes corresponding to x and y in G2

There may be more than one such correspondence between then nodes of G! and G2
when the graphs are isomorphic.

According to informal definition, when G1 and G2 are isomorphic, they both represent 
the same graph. In effect, the one-to-one correspondence  between the nodes of G1 
and G2 is  a one-to-one correspondence  between the nodes of a single graph. 
Is there any practical sense of studying  ?    



Automorphism  digression
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Let G be a graph. A one-to-one  correspondence between  the nodes of G is called a 
automorphism of G when 

There is and edge between x and y in G
if and only if           

there is an edge between nodes corresponding to x and y in G.

There always exists at least one automorphism for any graph. Trivially,  it is possible to 
map each node to itself. 

The one-to-one correspondence between the nodes of a graph is a permutation of the 
nodes.

There are N! different permutations of the nodes. Which of them are automorphisms, 
and which of them are not, that depends on the graph itself.



Automorphism  digression
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On a complete graph on N nodes, there are N! automorphisms, any 
permutation of the nodes is an automorphisms. For N = 6 there are 
720 different automorphisms.  

On a complete bipartite graph on M and N nodes, there are  
2 × M! × N! automorphisms. Any permutation which maps a node 
to another node in the same partition is  an automorphisms. Also, 
the partitions may be swapped.   For M = 4, N = 3, there are 
2 × 4! × 3! = 2 × 24 × 6 = 288 different automorphisms.  

On a path  graph N nodes, there are  2 automorphisms. One is the 
identity permutation, the other automorphism is the permutation 
which maps each node to its counterpart on the same place on the 
“reversed” path.



Automorphism  digression
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On many graphs, there is only one automorphism, represented by 
the identity permutation of the nodes.

In general, the composition of two automorphisms is another automorphism (it is a 
composition of  permutations), and the set of automorphisms of a given graph, under 
the composition operation, forms a group, the automorphism group of the graph. 

composed
with

yields

one automorphism another automorphism a third automorphism



Examples of isomorphic and non-isomorphic graphs

c d

e
a

f

b

4 3

6

1

5

2

|nodes| = 6
|edges| = 9
is regular = true
max degree = 3
diameter = 2
no. of triangles = 0

|nodes| = 6
|edges| = 9
is regular = true
max degree = 3
diameter = 2
no. of triangles = 2

( triangles 1-4-6 and  2-3-5 )

G1 G2
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de

a

|V(G1)| = 5
|E(G1)| = 6
min degree = 2
max degree = 3
degree sequence  = [3 3 3 3 2]
...
etc.

|V(G2)| = 5
|E(G2)| = 6
min degree = 2
max degree = 3
degree sequence  =  [3 3 3 3 2]
...
etc.

G1 G2

c

54

2

1

3

b

Are G1 and  G2  isomorphic to each other? 

?The question
remains: 

?
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Examples of isomorphic and non-isomorphic graphs



de

a

G1 G2

c

54

2

1

3

b

{ {a, e}
{a, b}
{b, c}
{c, e}
{e, d}
{c, d}
{b, d} }

{ {1, 2}
{1, 3}
{1, 5}
{2, 3}
{2, 4}
{3, 5}
{4, 5} }

Nodes mapping

a --- 4
b --- 5
c --- 3
d --- 1
e --- 2

{ {4, 2}
{4, 5}
{5, 3}
{3, 2}
{2, 1}
{3, 1}
{5, 1} }

G1: Set of edges: G2: Set of edges:
G1: Set of 
mapped edges:

Both sets of edges are the same.  G1 and G2 are isomorphic.
(Verification:  Sort all sets, compare items one by one.)
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Examples of isomorphic and non-isomorphic graphs

G3

G1

12

4 3

5
Nodes mapping

a --- 4
b --- 5
c --- 3
d --- 1
e --- 2



G1
G2b

c d e

f g

a

h

i j k

l

n

3

5 6 7

9 10 11

2

13 14

4

8

1

12

|V(G1)| = 14
|E(G1)| = 16
degree sequence  = 

[3 3 3 3 2 2 2 2 2 2 2 2 2 2]
diameter = 7,  ( distance(l, e) )
isBipartite = yes
...

|V(G2)| = 14
|E(G2)| = 16
degree sequence  = 

[3 3 3 3 2 2 2 2 2 2 2 2 2 2]
diameter = 7,  ( distance(4, 11) )
isBipartite = yes
...

Are G1 and  G2  isomorphic to each other? 

?
The question

remains: 

m

?
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Examples of isomorphic and non-isomorphic graphs



G1
G2b

c d e

f g

a

h

i j k

l

n

3

5 6 7

9 10 11

2

13 14

4

8

1

12

multisets of degrees 
of neighbours 
of nodes with degree 3: 
{ {3 2 2}     // d

{3 2 2}      // f
{3 3 2}      // g
{3 3 2} }   //  j

G1 and  G2  are not isomorphic to each other. 

m multisets of degrees 
of neighbours 
of nodes with degree 3: 
{ {3 2 2}      // 5

{3 2 2}       // 6
{3 2 2}       // 9
{3 2 2} }    // 10

Another Invariant: 
G1 -- nodes of degree 3 
form a connected subgraph. 

G2 -- nodes of degree 3 
form two mutually unconnected subgraphs.

More invariants: Try yourself....
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Examples of isomorphic and non-isomorphic graphs



So far, no such set of properties is known.

Is there a fixed set of properties which values can be calculated  for any graph,
no matter how effectively (linearly, polynomially , exponentially), 
and which values would decide whether two given graphs G1, G2 are isomorphic?
In the sense:                                

values calculated on G1 == values calculated on G2
if and only if   

G1 is isomorphic to  G2
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Difficulty

Advanced heuristical approaches solve the problem in many practical settings: 
SW:    nauty and Traces: https://pallini.di.uniroma1.it/  

based on papers by Brendan D.McKay and AdolfoPiperno: Practical graph isomorphism I and II.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.169.6684
https://arxiv.org/abs/1301.1493

Partial solution

It is also unknown whether it is NP-hard/complete to check if two graphs are isomorphic.



Isomorphism is difficult to confirm/reject when the graphs are highly symmetric.
Informally, symmetry means that a graph "looks the same" in the vicinity of each node. 
The number of candidate bijections is then difficult to reduce when there are no obvious 
invariants which values would help to distinguish between different nodes. 
As a simple example, consider the following pair of graphs.
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Examples of isomorphic and non-isomorphic graphs

Picture credit to  https://sagecell.sagemath.org and code
g1 = graphs.CirculantGraph(19, [1,5,8] ); g1.show() 
g2 = graphs.CirculantGraph(19, [1,4,7] ); g2.show() 

https://sagecell.sagemath.org/


∀ x, y ∈ V1 :    (f (x), f (y)) ∈ E2 ⇔   (x, y) ∈ E1

Two directed graphs G1=(V1,E1) and G2=(V2,E2) are isomorphic
if there is a bijection f : V1 → V2 such that

All isomorphism properties, algorithms, notions, etc. defined for undirected graphs, can be 
analogously defined and analyzed/solved in analogous manner 
for directed graphs.

G1
G2 G3

Graphs G1 and G2 are isomorphic,  G3 is not isomorphic to any of G1, G2.

In these slides, term graph always refers to an undirected graph, if not specified otherwise. 

Example:
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Isomorphism of directed graphs



N Number f(N)  of graphs on N nodes (incl. unconnected ones)          https://oeis.org/A000088

1 1
2 2
3 4
4 11
5 34 
6 156 
7 1044 
8 12346 
9 274668 
10 12005168 
15 31426485969804308768
20 645490122795799841856164638490742749440 ~  6.5 ∙ 1038

30 3344943163092576692494395699280800289566314799353930643299678348872177345348
80582749030521599504384 ~ 3.3 ∙ 1098

40
7793841167914977954582550817575177766066055272533160501864210580719699592280
7665987621085074589139360819329653520373728865932592867538838570163833079818
63462449691949358853053120648183808 ~ 7.8 ∙ 10186 

N see inset 
Applying brute force and checking all graphs for would be a hopeless effort. 

17PAL 2020/04 Graph isomorphism  notes

f(N)

( )N 
22

N! 

lim
N→∞

= 1 The formula approximates
f(N) tightly, in the sense:

f(N) ≤   
( )N 

22
N! 

Approximation of
the number of graphs:



N Number f'(N)  of connected graphs on N nodes          https://oeis.org/A001349

1 1
2 1
3 2
4 6
5 21
6 112 
7 853 
8 11117 
9 261080 
10 11716571 
15 31397381142761241960
20 645465483198722799426731128794502283004

30 3344942976179029274740625889887714205924003404484971757354867875739197630926
64433461017585013705594

40
7793841167347901373159586190645563996131177435680973666982243627070377497235
4174178748323987582425416768805527046107079810797229883124475331332011126406
04192083672776028633590109166374659

N asymptotically same as all graphs,  in the sense:   lim { N→∞ ,  f'(N) / f(N) } = 1  
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Applying brute force and checking all graphs for would be a hopeless effort. 



N Number f''(N)  of undirected trees  on N nodes          https://oeis.org/A001349

1 1
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 47
10 106
15 7741
20 823065
30 14830871802 ~ 1.5 ∙ 1010

40 363990257783343 ~ 3.6 ∙ 1014

100 630134658347465720563607281977639527019590
N Formula is too complex to fit here, see the OEIS reference above
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Applying brute force and checking all trees would be a hopeless effort. 



(.) Maximum/maximum node degree
(.) Degree sequence (sequence of all node degrees sorted in non-increasing order)
(.) Connected - yes/no
(.) Number of edges
(.) Bipartite - yes/no
(.) Regular - yes/no (the degree of all nodes is the same) 
(.) Tree - yes/no
(.) Planar - yes/no (can be drawn in a plane without edges crossing)
(X) Diameter, radius, eccentricity, number of centers
(X) Number of triangles
(X) Length of the shortest cycle (so called girth of the graph)
(.) Number of bridges/cutvertices/blocks
(X) Hamiltonian - yes/no  (Hamilton path or cycle exists in the graph)
(X) Spectrum (= multiset of eigenvalues) of adjacency (Laplacian) matrix of the graph
(X) Number of automorphisms
(X) Chromatic/independence/dominancy/clique  numbers  (see respective definitions...)
...
…
(.) O(E+V),    (X) more complex than O(E+V),  polynomial or exponential. 
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Examples of more graph invariants  (a tiny! selection): 



When two graphs  G1, G2 are selected randomly from the set of all graphs on N nodes or 
when they are generated randomly, then  

A. The probability that  G1 and G2 are isomorphic is very close to 0.  *)
B. The probability that the values of some (in fact, of many) of invariants in G1 and G2 are 
different is very close to 1.

A.  ≡ Very probably,  G1 and G2 are not isomorphic.
B.  ≡ Very probably,  it is (relatively) easy to verify G1 and G2 are not isomorphic . 

Conclusion:
When the graphs are not isomorphic, 
checking the values of various (easy to compute, preferentially! ) invariants in both graphs, 
quickly confirms this fact in majority of (random) cases. 

*) How close? The probability p is in  the order of   n! / 2comb(n,2). 
For example, n = 10, p = 10! / 245 ≅ 10−7;      n = 100, p = 100! / 24950 ≅ 10−1332.
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Two random graphs are extremely(!) probably NOT isomorphic



1. Elementary
Fix nodes of G1. Generate all permutations of nodes of G2.
For each permutation of nodes in G2 check if mapping nodes in G1 
to permuted nodes in G2 is an isomorphism. 
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Isomorphism of general graphs -- computation approaches 

2. Exploiting node properties
In G1 and in G2, split nodes to separate subsets,  in which nodes share identical 
properties. Strive to minimize subset sizes (= compute many node properties).
Generate all permutations of nodes inside each subset in  G2. 

For each set of permutations of nodes in all subsets  in G2 
check if mapping nodes in subsets in G1 to permuted nodes in subsets in G2 is an 
isomorphism. 

3. Exploiting node properties, recursive backtrack
In G1 and in G2, split nodes to separate subsets,  in which nodes share identical 
properties. Strive to minimize subset sizes (= compute many node properties).
Recursively try to match a pair of nodes X in G1 and Y in G2, X and Y belong to subsets 
with identical properties.  For X in G1, try all Y in the corresponding subset in G2. If 
matching X -- Y  does not violate isomorphism condition, recurse to next node in G1, 
otherwise backtrack. Isomorphism condition in this case is: Already matched neighbours 
of X are matched  exactly to already matched neighbours of Y. 



abcd

efg

h ijk

01 01 01 01
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i
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0 1
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1 1

1

0

0

0010

10 10 10

0

0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1
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Tree certificate idea and example 

Describe any tree completely by sequence of 0s and 1s, a so-called certificate. 
The certificates are same for two trees iff the trees are isomorphic.  
Thus,  checking isomorphism between two trees reduces to computing certificates of 
both trees and checking wheter the certificates are identical. 
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efg

h ijk

01 01 01 01
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01 01 01

0000101110001101100111

i
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g b e
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d

j
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0

0 1

1

1

1

1 1

1

0

0

0010

10 10 10

0

0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1

 Perform DFS from the root == center of the tree. Always expand DFS into that subtree 
which certificate is lexicographically the smallest. 

 Output 0 when the node is being open and output 1 when the node is being closed.
 The  output sequence is the tree certificate, it is obvious by induction.
 Drawback:  DFS cannot know the subtrees certificates in advance. 
 The idea can be used only for reconstructing the tree from the certificate.
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Tree certificate idea and example 



abcd

efg

h ijk

01 01 01 01

01

01
01

01

01 01 01

c

f

0011 0011

01
01

001011

0011g

j

e

b

f

00011011

00010111
000111

g

b

01 01

010101

001011

0011

0011

f

00011011

00010111
0000101110001101100111
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Tree certificate example 

nondecreasing 
lexicographic order
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Tree certificate computation

1.  Label all the vertices of G with the string 01.
2.  While there are more than two vertices in G do:

For each non-leaf 𝑥𝑥 of G:
a)  Let Y be the multi-set of labels of the leaves adjacent to 𝑥𝑥 and also the label of 𝑥𝑥, 

with the initial 0 and trailing 1 deleted from the label of 𝑥𝑥.
b)  Replace the label of 𝑥𝑥 with concatenation of the labels in Y sorted 

in increasing lexicographic order, with 0 prepended and a 1 appended.
c)  Remove all leaves adjacent to 𝑥𝑥 in G.

3.  If there is only one vertex 𝑥𝑥 left in G, report the label of 𝑥𝑥 as certificate.
4. If there are two vertices 𝑥𝑥 and 𝑦𝑦 left in G, report the labels of 𝑥𝑥 and 𝑦𝑦,  

concatenated in increasing lexicographic order, as the certificate.

f

00011011

00010111
000111

g

b

001011

0011

0011

f

00011011

00010111 g

b

0000101110001101100111

Label of node f:
nondecreasing 
lexicographic order



0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1
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f
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hk

0

0 1

1

1

1

1 1

1

0

0

0010

10 10 10

0

proc reconstructTree( certificate )
nodesList = emptyList() 
edgesList = emptyList() 
centers = emptyList()  // one or two centers
stack = emptyStack()

for digit in certificate
if digit == '0' 

create node X 
nodesList.add( X )       
if stack.isEmpty()

centers.add( X )
else

edgesList.add( pair(stack.top(),X) )
stack.push( X )

else // digit == '1'
stack.pop()

if centers.size() == 2  // two centers
edgesList.add( pair(centers[0],centers[1]) )  

return nodesList, edgesList, centers  

g

j

hk

0

0 1

1

1

010

ac

d

1

1

0

0

10 1 0

i0

0 1

b

n

e 101

0 1

0 10 1
f m

l

0000101110001101110000111011
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Tree certificate example 



def reconstruct( certificate ):
nodes, edges, stack  = [], [], []
centers = [] # 1 or 2 centers
newNode = 0  # nodes are integers

for digit in certificate:
if digit == '0':

newNode += 1  # 'create' new node
nodes.append( newNode )
if len( stack ) == 0: # empty

centers.append( newNode )
else:

edges.append( [newNode, stack[-1]] )
stack.append( newNode )

else: # digit == '1':
stack.pop()  

if len( centers ) == 2:
edges.append( [centers[0], centers[1]] )

return nodes, edges, centers

cer = "0000101110001101110000111011"
nodes, edges, centers = reconstruct( cer )

g

j

hk

0

0 1

1

1

010

ac

d

1

1

0

0

10 1 0

i0

0 1

b

n

e 101

0 1

0 10 1
f m

l

0000101110001101110000111011
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Tree certificate example  - Python reconstruction  
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