
A Priority queue trouble

Usual theoretical and conceptual descriptions of Prim's (Dijkstra's, etc.) algorithm say:
"... store nodes in a priority queue".
Technically, this is nearly impossible to do.
The graph and the nodes are defined separately and stored elsewhere in the memory.
A node has no reference to its position in the queue.
The programmer does not know where that node is located in the queue.
So, how to move a node inside the queue according to the algorithm demands?
Standard solution:
 Do not move a node, enqueue a "copy of the node", possibly more times.

Later, when a copy of the node with the smallest value (=highest priority) among
all its copies appears at the top of the queue,
it does its job exactly according to the algorithm prescription.
From that moment on, all other copies of the node which are still in the queue
become useless and must be ignored. The easiest way to ignore a copy is to
check it when it appears at the top of the queue: If the node is already closed,
ignore the copy, pop it and process the next top of the queue. If the node is still
open, process it according to the algorithm.

@1

Notes on priority queue management

30
y

10
x

50
INF

w
8

5
2

z

x u ... y ... z ... w ...
10 17 ... 30 ... 50 ... INF ...

17
u

18
y

10
x

15
12

w
8

5
2

z

17
u

... .. w ... z ... u ... y ...

... .. 12 ... 15 ... 17 ... 18 ...

.. w ... z ... u ... y ... y ... z ... w ...

.. 12 ... 15 ... 17 ... 18 ... 30 ... 50 ... INF ...

Difficult

q.insert(y);
q.insert(z);
q.insert(w);

The older copies of nodes will get to the top of the queue later than the new copies (which
have higher priority) . The older copy gets to the top when the node had been processed and
closed earlier. Thus:
If the node at the top of the queue is a closed one, just pop it and do not process it any more.

// push the nodes
// once more to the queue.

Easy

@2

priority queuetop

priority queue

priority queue

top

top

old copiesnew copies

	Slide Number 1
	Slide Number 2

