
Advanced algorithms
asymptotic notation,

graphs and their representation in computers

Jiří Vyskočil, Radek Mařík

2013

Advanced algorithms
2 / 32

Introduction
 Subject WWW pages:

https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start

 Goals

Individual implementation of variants of standard (basic and intermediate) problems
from several selected IT domains with rich applicability. Algorithmic aspects and
effectiveness of practical solutions is emphasized. The seminars are focused mainly
on implementation elaboration and preparation, the lectures provide a necessary
theoretical foundation.

 Prerequisites

The course requires programming skills in at least one of programming languages
C/C++/Java. There are also homework programming tasks. Understanding to basic
data structures such as arrays, lists, and files and their usage for data processing is
assumed.

Advanced algorithms
3 / 32

Asymptotic notation
 Asymptotic upper bound:

 Meaning:

The value of the function f is on or below the value of the

function g (within a constant factor)

 Definition:

0 0

Advanced algorithms
4 / 32

Asymptotic notation
 Asymptotic lower bound :

 Meaning:

The value of the function f is on or above the value of the

function g (within a constant factor)

 Definition:

0 0

Advanced algorithms
5 / 32

Asymptotic notation
 Asymptotic tight bound :

 Meaning:

The value of the function f is equal to the value of the

function g (within a constant factor).

 Definition:

ሺ∃ܿ1, ܿ2 ൐ 0ሻሺ∃݊0ሻሺ∀݊ ൐ ݊0ሻ: |ܿ1 ∙ ݃ሺ݊ሻ| ൏ |݂ሺ݊ሻ| ൏ |ܿ2 ∙ ݃ሺ݊ሻ|

Advanced algorithms
6 / 32

Asymptotic notation
 Example: Consider two-dimensional array MxN of

integers. What is asymptotic growth of searching for the
maximum number in this array?

 upper:
 O((M+N)2) 

 O(max(M,N)2) 
 O(N2) 

 O(MN) 

 tight:
 (MN)

 lower:
 (1) 

 (M) 

 (MN) 

Advanced algorithms
7 / 32

Graphs
 A graph is an ordered pair of a set of vertices (nodes)

and a set of edges (arcs)



where V is a set of vertices and
E is a set of edges

such as:

 Example:
 V={a,b,c,d,e}
 E={{a,b},{b,e},{e,c},{c,d},

{d,a},{a,c},{b,d},{b,c}} a

b

e

d

c

Advanced algorithms
8 / 32

Graphs - orientation
 Undirected graph

 Edge is not ordered pair of
vertices

 E={{a,b},{b,e},{e,c},{c,d},
{d,a},{a,c},{b,d},{b,c}}

 Directed graph (digraph)
 Edge is an ordered pair of

vertices
E={(b,a),(b,e),(c,e),(c,d),

(a,d),(c,a),(b,d),(b,c)}

a

b

e

d

c

a

b

e

d

c

Advanced algorithms
9 / 32

Graphs – weighted graph
 Weighted graph

 A number (weight) is assigned to each edge
Often, the weight is formalized using a weight

function:

w({a,b}) = 1.1 w({a,c})= 7.2

w({b,e}) = 2.0 w({b,d})= 10

w({e,c}) = 0.3 w({b,c})= 0

w({c,d}) = 6.8

w({d,a}) = -2.4 a

b

e

d

c

0.32.0

6.8

0

1.1

-2.4

10

7.2

Advanced algorithms
10 / 32

Graphs – node degree
 incidence

 If two nodes x,y are linked by edge e, nodes x,y are said to be incident
to edge e or, edge e is incident to nodes x,y.

 Node degree (for undirected graph)
 A function that returns a number of edges incident to a given node.

deg(a)=3
deg(b)=4
deg(c)=4
deg(d)=3
deg(e)=2

a

b

e

d

c

Advanced algorithms
11 / 32

Graphs – node degree
 Node degree (for directed graphs)

 indegree

 outdegree

deg+(a)=2 deg-(a)=1
deg+(b)=0 deg-(b)=4
deg+(c)=1 deg-(c)=3
deg+(d)=3 deg-(d)=0
deg+(e)=2 deg-(e)=0

൅

െ

a

b

e

d

c

Advanced algorithms
12 / 32

Graphs – handshaking lemma
 Handshaking lemma (for undirected graphs)

 Explanation: Each edges is added twice – once for the
source node, then once for target node.

 The variant for directed graphs

ܸ∋ݒ

൅

ܸ∋ݒ

െ

Advanced algorithms
13 / 32

Graphs – complete graph
 complete graph

 Every two nodes are linked by an edge

 A consequence

1

2

4

6

5 3

Advanced algorithms
14 / 32

Graphs – path, circuit, cycle
 path

 A path is a sequence of vertices and
edges (v0, e1, v1,..., et, vt), where all
vertices v0,..., vt differ from each
other and for every i = 1,2,...,t, ei =
{vi-1, vi}  E(G). Edges are traversed
in forward direction.

 circuit
 A circuit is a closed path, i.e. a

sequence (v0, e1, v1,..., et, vt = v0),.

 cycle
 A cycle is a closed simple chain.

Edges can be traversed in both
directions.

1

2

4

6

5 3

(1,{1,6},6,{6,5},5,{5,3},3,{3,4},4)

1

2

4

6

5 3

(2,{2,5},5,{5,3},3,{3,2},2)

Advanced algorithms
15 / 32

Graphs – connectivity
 connectivity

 Graph G is connected if for every pair of vertices x
and y in G, there is a path from x to y.

Connected graph Disconnected graph

Advanced algorithms
16 / 32

Graphs - trees
 tree

The following definitions of a tree (graph G) are equivalent:
 G is a connected graph without cycles.
 G is such a graph so that a cycle occurs if an arbitrary

new edges is added.
 G is such a connected graph so that it becomes

disconnected if any edge is removed.
 G is a connected graph with |V|-1 edges.
 G is a graph in which every two vertices are connected

by just one path.

Advanced algorithms
17 / 32

Graphs - trees
 Undirected trees

 A leaf is a node of degree 1.

 Directed trees (the orientation might be opposite sometimes!)
 A leaf is a node with no outgoing edge.
 A root is a node with no incoming edge.

Advanced algorithms
18 / 32

Graphs – adjacency matrix
 Adjacency matrix

 Let G=(V,E) be a graph with n vertices.
Let’s label vertices v1, …,vn (in some order).
Adjacency matrix of graph G is a square matrix

defined as follows

݅,݆
݅ ݆

G ݅,݆ ݅,݆ൌ1
݊

Advanced algorithms
19 / 32

Graphs – adjacency matrix
(for directed graph)

1

2

0

3

4

5

0

0

1

0

1

0

1

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

1 2 3 4 5

0

Advanced algorithms
20 / 32

Graphs – Laplacian matrix
 Laplacian matrix

 Let G=(V,E) be a graph with n vertices
Let’s label vertices v1, …,vn (in an arbitrary order).
Laplacian matrix of graph G is a square matrix

defined as follows

G ݅,݆ ݅,݆ൌ1
݊

݈݅,݆ ൌ ൝
degሺ݅ݒሻ for ݅ ൌ ݆				
െ1 for ሼ݅ݒ , ݒ݆ ሽ ∈ ܧ
0												otherwise																

Advanced algorithms
21 / 32

Graphs – Laplacian matrix

1

2

3

3

4

5

-1

-1

-1

0

-1

4

-1

-1

-1

-1

-1

4

-1

-1

-1

-1

-1

3

0

0

-1

-1

0

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

1 2 3 4 5

2

Advanced algorithms
22 / 32

Graphs – distance matrix
 Distance matrix

 Let G=(V,E) is a graph with n vertices and
a weight function w.
Let’s label vertices v1, …,vn (in an arbitrary order).
Distance matrix of graph G is a square matrix

defined by the formula

G ݅,݆ ݅,݆ൌ1
݊

݅,݆
݅ ݆ ݅ ݆

Advanced algorithms
23 / 32

Graphs – DAG
 DAG (Directed Acyclic Graph)

 DAG is a directed graph without cycles (=acyclic)

Advanced algorithms
24 / 32

Graphs – multigraph
 Multigraph (pseudograph)

 It is a graph where multiple edges and/or edges
incident to a single node are allowed.

Advanced algorithms
25 / 32

Graphs – incidence matrix
 Incidence matrix

 Let G=(V,E) be a graph where |V|=n and |E|=m.
Let’s label vertices v1, …,vn (in some arbitrary order) and edges
e1, …,em (in some arbitrary order). Incidence matrix of graph G
is a matrix of type

defined by the formula

In other words, every edge has -1 at the source vertex and +1 at
the target vertex. There is +1 at both vertices for undirected
graphs.

݊ൈ݉

ሺܫሻ݅,݆ ൌ ቐ
െ1 for ݆݁ ൌ ሺ݅ݒ ,∗ሻ
൅1 for ݆݁ ൌ ሺ∗, ሻ݅ݒ

				0												otherwise																			

Advanced algorithms
26 / 32

Graphs – incidence matrix

1

2

0

3

4

5

0

1

0

-1

0

0

1

-1

0

1

0

0

-1

0

-1

1

0

0

0

0

1

0

0

-1

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

e1e5
e6

e2e4

e3

e7

e8

1 2 3 4 5 6

0

1

-1

0

0

-1

0

1

0

0

0

1

0

-1

0

7 8

Advanced algorithms
27 / 32

Graphs – adjacency list
 adjacency list (list of neighbours)

 In an adjacency list representation, we keep, for each vertex in the graph, a
list of all other vertices which it has an edge to (that vertex's "adjacency list").

 For instance, the adjacency list of graph G could be an array P of pointers of
size n, where P[i] points to a linked list of all node indices to which node vi is
linked by an edge (similarly defined for the case of directed graph).

v1

v2

v5

v4

v3

v1 2 3 4

v2 5 3

v3 4

v4 3 1 2

v5 2 3

1 4

2 1 5

A hash list or a hash table (instead of a linked list) can improve
access times to vertices.

Advanced algorithms
28 / 32

Comparison of graph representations
Adjacency
Matrix

Laplacian
Matrix

Adjacency List Incidence Matrix

Storage |V||V| ∈ O(|V|2) O(|V|+|E|) |V||E| ∈ O(|V||E|)

Add vertex O(|V|2) O(|V|) O(|V||E|)

Add edge O(1) O(|V||E|)

Remove vertex O(|V|2) O(|E|) O(|V||E|)

Remove edge O(1) O(|V|) O(|V||E|)
Check: are u, v
adjacent? O(1) deg(v) ∈ O(|V|) O(|E|)

Process vertex
neighbours

O(|V|) deg(v) ∈ O(|V|) O(|E|)

Query: get vertex v
degree deg(v) O(|V|) O(1) deg(v) ∈ O(|V|) |E| ∈ O(|E|)

Remarks Slow to add or remove vertices,
because matrix must be
resized/copied

When removing edges or
vertices, need to find all
vertices or edges

Slow to add or remove vertices
and edges, because matrix
must be resized/copied

important

Advanced algorithms
29 / 32

Graphs - DFS
 DFS - Depth First Search

procedure dfs(start_vertex : Vertex)

var to_visit : Stack = empty;

visited : Vertices = empty;

{

to_visit.push(start_vertex);

while (size(to_visit) != 0) {

v = to_visit.pop();

if v not in visited then {

visited.add(v);

for all x in neighbors of v {

to_visit.push(x);

}

}

}

}

Advanced algorithms
30 / 32

Graphs - BFS
 BFS - Breadth First Search

procedure bfs(start_vertex : Vertex)

var to_visit : Queue = empty;

visited : Vertices = empty;

{

to_visit.push(start_vertex);

while (size(to_visit) != 0) {

v = to_visit.pop();

if v not in visited then {

visited.add(v);

for all x in neighbors of v {

to_visit.push(x);

}

}

}

}

Advanced algorithms
31 / 32

Graphs – priority queue
 priority queue

 Is a queue with operation insert to the queue with
a priority.

 In case the priority is the lowest, the queue behaves
as push into a normal queue.

 In case the priority is the highest, the queue behaves
as push into a stack.

 Both DFS and BFS might be realized using a priority
queue with an appropriate value of priority during
inserting of elements.

Advanced algorithms
32 / 32

References

 Matoušek, J.; Nešetřil, J. Kapitoly z diskrétní matematiky.
Karolinum. Praha 2002. ISBN 978-80-246-1411-3.

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford (2001). Introduction to Algorithms (2nd ed.). MIT
Press and McGraw-Hill. ISBN 0-262-53196-8.

