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Introduction
 Subject WWW pages:

https://cw.felk.cvut.cz/doku.php/courses/ae4m33pal/start

 Goals

Individual implementation of variants of standard (basic and intermediate) problems
from several selected IT domains with rich applicability. Algorithmic aspects and
effectiveness of practical solutions is emphasized. The seminars are focused mainly
on implementation elaboration and preparation, the lectures provide a necessary
theoretical foundation.

 Prerequisites

The course requires programming skills in at least one of programming languages
C/C++/Java. There are also homework programming tasks. Understanding to basic
data structures such as arrays, lists, and files and their usage for data processing is
assumed.
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Asymptotic notation
 Asymptotic upper bound:

 Meaning: 

The value of the function f is on or below the value of the 

function g (within a constant factor)

 Definition: 

0 0
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Asymptotic notation
 Asymptotic lower bound :

 Meaning: 

The value of the function f is on or above the value of the 

function g (within a constant factor)

 Definition: 

0 0
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Asymptotic notation
 Asymptotic tight bound :

 Meaning: 

The value of the function f is equal to the value of the 

function g (within a constant factor).

 Definition: 

ሺ∃ܿ1, ܿ2 ൐ 0ሻሺ∃݊0ሻሺ∀݊ ൐ ݊0ሻ: |ܿ1 ∙ ݃ሺ݊ሻ| ൏ |݂ሺ݊ሻ| ൏ |ܿ2 ∙ ݃ሺ݊ሻ|
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Asymptotic notation
 Example: Consider two-dimensional array MxN of 

integers. What is asymptotic growth of searching for the 
maximum number in this array?

 upper:
 O((M+N)2) 

 O(max(M,N)2) 
 O(N2) 

 O(MN) 

 tight:
 (MN)

 lower: 
 (1) 

 (M) 

 (MN) 
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Graphs
 A graph is an ordered pair of a set of vertices (nodes) 

and a set of edges (arcs)



where V is a set of vertices and
E is a set of edges

such as:

 Example:
 V={a,b,c,d,e}
 E={{a,b},{b,e},{e,c},{c,d},

{d,a},{a,c},{b,d},{b,c}} a

b

e

d

c 
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Graphs - orientation
 Undirected graph

 Edge is not ordered pair of 
vertices

 E={{a,b},{b,e},{e,c},{c,d},         
{d,a},{a,c},{b,d},{b,c}}

 Directed graph (digraph)
 Edge is an ordered pair of 

vertices
E={(b,a),(b,e),(c,e),(c,d),      

(a,d),(c,a),(b,d),(b,c)}

a

b

e

d

c

a

b

e

d

c
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Graphs – weighted graph
 Weighted graph

 A number (weight) is assigned to each edge
Often, the weight is formalized using a weight

function:

w({a,b}) = 1.1 w({a,c})= 7.2

w({b,e}) = 2.0 w({b,d})= 10

w({e,c}) = 0.3 w({b,c})= 0

w({c,d}) = 6.8

w({d,a}) = -2.4 a

b

e

d

c

0.32.0

6.8

0

1.1

-2.4

10

7.2
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Graphs – node degree
 incidence

 If two nodes x,y are linked by edge e, nodes x,y are said to be incident 
to edge e or,  edge e is incident to nodes x,y. 

 Node degree (for undirected graph)
 A function that returns a number of edges incident to a given node. 

deg(a)=3
deg(b)=4
deg(c)=4
deg(d)=3
deg(e)=2

 

a

b

e

d

c
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Graphs – node degree
 Node degree (for directed graphs)

 indegree

 outdegree

deg+(a)=2 deg-(a)=1
deg+(b)=0 deg-(b)=4
deg+(c)=1 deg-(c)=3
deg+(d)=3 deg-(d)=0
deg+(e)=2 deg-(e)=0

൅

െ

a

b

e

d

c
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Graphs – handshaking lemma
 Handshaking lemma (for undirected graphs)

 Explanation: Each edges is added twice – once for the 
source node, then once for target node.

 The variant for directed graphs

ܸ∋ݒ

 

൅

ܸ∋ݒ

െ  
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Graphs – complete graph
 complete graph

 Every two nodes are linked by an edge

 A consequence

 

 

1

2

4

6

5 3
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Graphs – path, circuit, cycle
 path

 A path is a sequence of vertices and 
edges (v0, e1, v1,..., et, vt ), where all 
vertices v0,..., vt differ from each 
other and for every i = 1,2,...,t, ei = 
{vi-1, vi}  E(G). Edges are traversed 
in forward direction.

 circuit
 A circuit is a closed path, i.e. a 

sequence (v0, e1, v1,..., et, vt = v0),.

 cycle
 A cycle is a closed simple chain. 

Edges can be traversed in both 
directions.

1

2

4

6

5 3

(1,{1,6},6,{6,5},5,{5,3},3,{3,4},4)

1

2

4

6

5 3

(2,{2,5},5,{5,3},3,{3,2},2)
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Graphs – connectivity
 connectivity

 Graph G is connected if for every pair of vertices x
and y in G, there is a path from x to y.

Connected graph Disconnected graph
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Graphs - trees
 tree

The following definitions of a tree (graph G) are equivalent:
 G is a connected graph without cycles.
 G is such a graph so that a cycle occurs if an arbitrary 

new edges is added.
 G is such a connected graph so that it becomes 

disconnected if any edge is removed.
 G is a connected graph with |V|-1 edges.
 G is a graph in which every two vertices are connected 

by just one path.
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Graphs - trees
 Undirected trees

 A leaf is a node of degree 1.

 Directed trees (the orientation might be opposite sometimes!)
 A leaf is a node with no outgoing edge.
 A root is a node with no incoming edge.
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Graphs – adjacency matrix
 Adjacency matrix

 Let G=(V,E)  be a graph with n vertices. 
Let’s label vertices v1, …,vn (in some order). 
Adjacency matrix of graph G is a square matrix

defined as follows

݅,݆
݅ ݆

G ݅,݆ ݅,݆ൌ1
݊
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Graphs – adjacency matrix
(for directed graph)

1

2

0

3

4

5

0

0

1

0

1

0

1

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

v1

v2

v5

v4

v3

v1

v2

v5

v4

v3

1 2 3 4 5

0
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Graphs – Laplacian matrix
 Laplacian matrix

 Let G=(V,E) be a graph with n vertices
Let’s label vertices v1, …,vn (in an arbitrary order). 
Laplacian matrix of graph G is a square matrix

defined as follows

G ݅,݆ ݅,݆ൌ1
݊

݈݅,݆ ൌ ൝
degሺ݅ݒሻ for ݅ ൌ ݆				
െ1 for ሼ݅ݒ , ݒ݆ ሽ ∈ ܧ
0												otherwise																
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Graphs – Laplacian matrix

1

2

3

3

4

5

-1

-1

-1

0

-1

4

-1

-1

-1

-1

-1

4

-1

-1

-1

-1

-1

3

0

0

-1

-1

0
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v2

v5

v4

v3

v1

v2

v5

v4

v3

1 2 3 4 5
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Graphs – distance matrix
 Distance matrix

 Let G=(V,E) is a graph with n vertices and
a weight function w. 
Let’s label vertices v1, …,vn (in an arbitrary order). 
Distance matrix of graph G is a square matrix

defined by the formula

G ݅,݆ ݅,݆ൌ1
݊

݅,݆
݅ ݆ ݅ ݆
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Graphs – DAG 
 DAG (Directed Acyclic Graph)

 DAG is a directed graph without cycles (=acyclic)
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Graphs – multigraph
 Multigraph (pseudograph)

 It is a graph where multiple edges and/or edges 
incident to a single node are allowed.
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Graphs – incidence matrix
 Incidence matrix

 Let G=(V,E) be a graph where |V|=n and |E|=m.
Let’s label vertices v1, …,vn (in some arbitrary order) and edges 
e1, …,em (in some arbitrary order). Incidence matrix of graph G
is a matrix of type

defined by the formula

In other words, every edge has -1 at the source vertex and +1 at 
the target vertex. There is +1 at both vertices for undirected 
graphs.

݊ൈ݉

ሺܫሻ݅,݆ ൌ ቐ
െ1 for ݆݁ ൌ ሺ݅ݒ ,∗ሻ
൅1 for ݆݁ ൌ ሺ∗, ሻ݅ݒ

				0												otherwise																			
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Graphs – incidence matrix
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Graphs – adjacency list
 adjacency list (list of neighbours)

 In an adjacency list representation, we keep, for each vertex in the graph, a 
list of all other vertices which it has an edge to (that vertex's "adjacency list"). 

 For instance, the adjacency list of graph G could be an array P of pointers of 
size n, where P[i] points to a linked list of all node indices to which node vi is 
linked by an edge (similarly defined for the case of directed graph).

v1

v2

v5

v4

v3

v1 2 3 4

v2 5 3

v3 4

v4 3 1 2

v5 2 3

1 4

2 1 5

A hash list or a hash table (instead of a linked list) can improve 
access times to vertices. 
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Comparison of graph representations
Adjacency 
Matrix

Laplacian
Matrix

Adjacency List Incidence Matrix

Storage |V||V| ∈ O(|V|2) O(|V|+|E|) |V||E| ∈ O(|V||E|)

Add vertex O(|V|2) O(|V|) O(|V||E|)

Add edge O(1) O(|V||E|)

Remove vertex O(|V|2) O(|E|) O(|V||E|)

Remove edge O(1) O(|V|) O(|V||E|)
Check: are u, v 
adjacent? O(1) deg(v) ∈ O(|V|) O(|E|)

Process vertex
neighbours

O(|V|) deg(v) ∈ O(|V|) O(|E|)

Query: get vertex v
degree  deg(v) O(|V|) O(1) deg(v) ∈ O(|V|) |E| ∈ O(|E|)

Remarks Slow to add or remove vertices, 
because matrix must be 
resized/copied

When removing edges or 
vertices, need to find all 
vertices or edges

Slow to add or remove vertices 
and edges, because matrix 
must be resized/copied

important
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Graphs - DFS
 DFS - Depth First Search

procedure dfs(start_vertex : Vertex) 

var to_visit : Stack = empty;

visited : Vertices = empty;

{

to_visit.push(start_vertex);

while (size(to_visit) != 0) {

v = to_visit.pop();

if v not in visited then {

visited.add(v);

for all x in neighbors of v {

to_visit.push(x);

}

}

}

}
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Graphs - BFS
 BFS - Breadth First Search

procedure bfs(start_vertex : Vertex) 

var to_visit : Queue = empty;

visited : Vertices = empty;

{

to_visit.push(start_vertex);

while (size(to_visit) != 0) {

v = to_visit.pop();

if v not in visited then {

visited.add(v);

for all x in neighbors of v {

to_visit.push(x);

}

}

}

}



Advanced algorithms
31 / 32

Graphs – priority queue
 priority queue

 Is a queue with operation insert to the queue with 
a priority.

 In case the priority is the lowest, the queue behaves 
as push into a normal queue.

 In case the priority is the highest, the queue behaves 
as push into a stack.

 Both DFS and BFS might be realized using a priority 
queue with an appropriate value of priority during 
inserting of elements.
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