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� K-means, algorithm, properties
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Formulation of the Least-Squares Clustering Problem

Given:
T = {xl}L

l=1 the set of observations
K the desired number of cluster prototypes

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

The result is obtained by solving the following optimization problem:

(c1, c2, ..., cK; T1, T2, ..., TK) = argmin
all c′

k,T ′
k

J(c′
1, c

′
2, ..., c

′
K; T ′

1 , T ′
2 , ..., T ′

K) (1)

where

J(c′
1, c

′
2, ..., c

′
K; T ′

1 , T ′
2 , ..., T ′

K) =

K∑
k=1

∑
x∈T ′

k

‖x− c′
k‖2 . (2)
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Formulation of the Least-Squares Clustering Problem

Given:
T = {xl}L

l=1 the set of observations
K the desired number of cluster prototypes

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

Note that this problem can be equivalently rewritten as an optimization in cluster
centres only:

(c1, c2, ..., cK) = argmin
{c′

k}K
k=1

J(c′
1, c

′
2, ..., c

′
K) , (3)

J(c′
1, c

′
2, ..., c

′
K) =

L∑
l=1

min
k∈{1,2,...,K}

‖xl − c′
k‖2 , (4)

with Tk’s then computed as

Tk = {x ∈ T : ∀j, ‖x− ck‖2 ≤ ‖x− cj‖2} (∀k = 1, 2, ...,K) . (5)
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K-Means: An Algorithm for the LS Clustering Problem

Given:
T = {xl}L

l=1 the set of observations
K the desired number of cluster prototypes

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

K-Means Algorithm:
1. Initialize the cluster centres {ck}K

k=1 (e.g. by random selection from the data points T ,
without replacement)

2. Assignment optimization (assign to closest etalon):

Tk = {x ∈ T : ∀j, ‖x− ck‖2 ≤ ‖x− cj‖2} (∀k = 1, 2, ...,K) (6)
3. Prototype optimization (updated etalon is the mean of data assigned to it):

ck =


1

|Tk|
∑
x∈Tk

x if |Tk| > 0

re-initialize if Tk = ∅
(∀k = 1, 2, ...,K) (7)

4. Terminate if ∀k : T t+1
k = T t

k , otherwise goto 2
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K-Means: Example
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Cluster the data points to K = 3
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K-Means: Example

3 2 1 0 1 2 3
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|w |w |w initial cluster centers
Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)
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K-Means: Example
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Cluster the data points to K = 3
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Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
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K-Means: Example

3 2 1 0 1 2 3
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Cluster the data points to K = 3
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Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
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K-Means: Example
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Cluster the data points to K = 3
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Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
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K-Means: Example

3 2 1 0 1 2 3
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(−− Voronoi boundaries)|w points with changed assignment

J = 26.88

Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
step 4, recompute centers
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K-Means: Example

3 2 1 0 1 2 3
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0
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J

(−− Voronoi boundaries)|w points with changed assignment

J = 26.00

Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
step 4, recompute centers
step 5, recompute assignments
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K-Means: Example

3 2 1 0 1 2 3
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0
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J

(−− Voronoi boundaries)|w points with changed assignment

J = 24.75

Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
step 4, recompute centers
step 5, recompute assignments
step 6, recompute centers

http://cmp.felk.cvut.cz


13/64
K-Means: Example

3 2 1 0 1 2 3
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0
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J

(−− Voronoi boundaries)|w points with changed assignment

J = 24.37

Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
step 4, recompute centers
step 5, recompute assignments
step 6, recompute centers
step 7, recompute assignments
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K-Means: Example

3 2 1 0 1 2 3
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step

0

30

60

J

(−− Voronoi boundaries)|w points with changed assignment

J = 23.80

Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
step 4, recompute centers
step 5, recompute assignments
step 6, recompute centers
step 7, recompute assignments
step 8, recompute centers
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K-Means: Example

3 2 1 0 1 2 3

2

1

0

1

2

0 2 4 6 8 10
step

0

30

60

J

(−− Voronoi boundaries)|w points with changed assignment

J = 23.80

Cluster the data points to K = 3
clusters

Initial cluster centers (here selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments
step 4, recompute centers
step 5, recompute assignments
step 6, recompute centers
step 7, recompute assignments
step 8, recompute centers
step 9, recompute assignments

The assignments have not changed.
Done.
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K-Means: Example with Reinitialization
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Cluster the data points to K = 4
clusters
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K-Means: Example with Reinitialization
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|w |w |w |w initial cluster centers
Cluster the data points to K = 4
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Initial cluster centers (here selected
randomly from data points)

http://cmp.felk.cvut.cz


18/64
K-Means: Example with Reinitialization
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Cluster the data points to K = 4
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Step 1, compute assignments
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K-Means: Example with Reinitialization
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Cluster the data points to K = 4
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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Cluster the data points to K = 4
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Step 4, recompute centres
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K-Means: Example with Reinitialization

5 0 5

5

0
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0 2 4 6 8 10
step

0

4000

8000

J

(−− Voronoi boundaries)

J = 1308

Cluster the data points to K = 4
clusters

Step 5, recompute assignments

No points assigned to cluster |w

⇒ it will be reinitialized.
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K-Means: Example with Reinitialization

5 0 5
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0 2 4 6 8 10
step

0

4000

8000

J

(−− Voronoi boundaries)

J = 1308

Cluster the data points to K = 4
clusters

Step 6

– recompute |w |w |w
– reinitialize |w
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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K-Means: Example with Reinitialization
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Step 15, recompute assignments
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K-Means: Example with Reinitialization
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Cluster the data points to K = 4
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Step 16, recompute centres
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K-Means: Example with Reinitialization

5 0 5
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(−− Voronoi boundaries)

J = 289.7

Cluster the data points to K = 4
clusters

Step 17, recompute assignments

Assigments haven’t changed. Done.
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K-Means: Properties

Clustering criterion: J(c1, c2, ..., cK; T1, T2, ..., TK) =
∑K

k=1

∑
x∈Tk
‖x− ck‖2 .

K-means algorithm skeleton:
1. Initialization
2. Assignment optimization (assign to closest etalon)
3. Cluster centres optimization (ck set to average of data in Tk)
4. Goto 2 if the assignments have changed

Convergence:
� During the run of the algorithm, J monotonically decreases because:
• Step 2: The contribution of each xl to J either stays the same, or gets lower,
• Step 3: For a fixed assignment Tk, the mean of the data points in Tk is the optimal

solution under the least squares criterion J . If Tk is empty and re-initizalization is
done for ck then this has no effect on J at this point, but it can only cause
additional decrease in J in the subsequent Step 2.

� Since there is a finite number of assignmens (how many?) and no assignment is
visited twice (why?), the K-means algorithm reaches a local minimum after a finite
number of steps.
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K-Means: Notes

� K-means is clearly not a guaranteed global minimum minimizer.

� In theory, there may be a problem of infinite looping through a set of assignments with
equal J , but this is not the case when breaking the ties in Step 2 is done consistently
(e.g. assigning to cluster with the lowest index if a point is equidistant to multiple
cluster centres.)

� As for the computational time, the complexity of assignment computation dominates,
as for every observation the nearest prototype is sought. Trivially implemented, this
requires O(LK) distance computations per iteration. Any idea for a speed-up?

� The algorithm is sometimes modified in a way that initialization is done by setting Tk’s
and swapping steps 2 and 3 in the iteration loop.
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Example of Local Minima
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Example of Local Minima
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randomly from data points)
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Local Minimum 1, J = 36
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(−− Voronoi boundary)|w |w final cluster centers

J = 36.00

Cluster the data points to K = 2
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Initial cluster centers (selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments

Done.
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Different Initialization
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Initial cluster centers (selected
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Local Minimum 2, J = 4

4 2 0 2 44
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(−− Voronoi boundary)|w |w final cluster centers

J = 4.000

Cluster the data points to K = 2
clusters

Initial cluster centers (selected
randomly from data points)

step 1, compute assignments
step 2, recompute centers
step 3, recompute assignments

Done.

This minimum is the global one,
reaching the optimum Jopt = 4.

There is no other local minimum
besides these two.
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Which Local Minimum Will Be Reached?

4 2 0 2 44
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B
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D

This depends on initialization. Let
us assume that A has been randomly
selected from data as the first cluster
centre ( |w).
If B is selected as the second cluster
centre, the output will be Minimum 1
(J = 36).

If C or D is selected as the second
cluster centre, the output will be
Minimum 2 (J = Jopt = 4).

All of the points B, C, D have equal chance of being randomly selected as the
second cluster centre. Thus, the algorithm outcome can be summarized as follows:

K-means output value of J odds
Minimum 1 36 1/3
Minimum 2 4 2/3
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K-Means++

K-Means++ is the K-means with clever initialization of cluster centers. The motivation is
to make initializations which make K-means more likely to end up in better local minima
(minima with lower J).

K-Means++ uses the following randomized sampling strategy for constructing the initial
cluster centers set C:

1. Choose the first cluster centre c1 uniformly at random from T . Set C = {c1}.

2. For each data point xl, compute the distance dl to its nearest cluster in C:

dl = min
c∈C
‖xl − c‖ (∀l = 1, 2, ..., L) (8)

3. Select a point xl from T with probability proportional to d2l . This involves constructing
a distribution p(l) from dl as p(l) = d2

l∑L
l=1 d2

l

and sampling from it to get the index l.

4. C ← C ∪ xl.

5. Stop if |C| = K, otherwise goto 2.

After this initialization, standard K-means algorithm is employed.
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K-means++, Example

10 5 0 5 10
10

5

0

5

10
Data: Points sampled from normal
distribution with unit variance, at
each of the following four positions
(40 samples each):
[−5, 0], [5, 0], [0,−5], [0, 5].

Problem: Initialize K = 4 cluster
centres using K-means++.

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example

10 5 0 5 10
10

5

0

5

10

c1

– Select c1

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example

10 5 0 5 10
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60.0
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240.0

300.0
300.0

360.0 0
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300

350

400 – Select c1
– update p(l)

squared distance d2l to the nearest centre

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example

10 5 0 5 10
10
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c1

c2
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120.0

180.0

240.0

300.0
300.0

360.0 0

50

100

150

200

250

300

350

400 – Select c1
– update p(l)
– Select c2

squared distance d2l to the nearest centre

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example
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360
– Select c1
– update p(l)
– Select c2
– update p(l)

squared distance d2l to the nearest centre

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example
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– Select c1
– update p(l)
– Select c2
– update p(l)
– Select c3

squared distance d2l to the nearest centre

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example

10 5 0 5 10
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135
– Select c1
– update p(l)
– Select c2
– update p(l)
– Select c3
– update p(l)

squared distance d2l to the nearest centre

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Example

10 5 0 5 10
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c4
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135
– Select c1
– update p(l)
– Select c2
– update p(l)
– Select c3
– update p(l)
– Select c4

Done.

squared distance d2l to the nearest centre

Sampling distribution p(l) is shown as
the scatter plot. Area of circle shown
at xl is proportional to p(l).
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K-means++, Bound on E(J)

� The following bound on expectation E(J) of the criterion value J exists when
K-means++ is used for initialization:

E(J) ≤ 8(lnK + 2)Jopt (9)

In the classical initialization (selecting all centres from data uniformly at random), no
such bound exists.

� Arthur, D. and Vassilvitskii, S. (2007). "k-means++: the advantages of careful
seeding". Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. pp.
1027–1035.
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K-means++, Effect on K-means outcome, Example 1

-δ 0 δ

-δ

0

δ

-δ 0 δ

-δ

0

δ

δ

Data: points sampled from normal
distribution with unit variance, at four
different positions (40 samples each):
µ1 = [−δ, 0]
µ2 = [δ, 0]
µ3 = [0, δ]
µ4 = [0,−δ]

Experiment: Cluster the data
repeatedly to K = 4 clusters, using
(i) standard and (ii) K-means++
initializations. Store the values of J
obtained in individual runs of K-means.
Compare distributions of J for the two
initializations.

(shown for δ = 7)
Jopt = 289.7
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K-means++, Effect on K-means outcome, Example 1

0 500 1000 1500 2000 2500 3000 3500 4000
J
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K-means++

histogram of values of J obtained
across 1024 runs of K-means (δ = 7)

Results (for δ = 7):
Jmean Jmin Jmax

standard init. 1002 289.7 4135
K-means++ 386.5 289.7 2637

Things to note:

� both initialization methods
found the optimal clustering
and reach Jopt = 289.7

� K-means++ achieved better
clustering on average
(lower Jmean)

� K-means++ also achieved
better worst case (lower Jmax)
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K-means++, Effect on K-means outcome, Example 1
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2000

3000
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5000
standard
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4 ≤ δ ≤ 16
Jmax Jmean

Dependence on δ. Results obtained by running K-means 128×
for each δ (Note: Jmin = Jopt for all δ’s and both methods.)

Note Jmean stays
low for
K-means++

20 30 40 50 60 70 80 90
δ

0

200000

400000

600000

800000

1000000
standard
K-means++

20 30 40 50 60 70 80 90
δ

0

50000

100000

150000

200000
standard
K-means++

20 ≤ δ ≤ 90
Jmax Jmean

Probability
of generating
initialization
resulting in non-
optimal outcome is
so low that no non-
optimal outcome is
encountered across
the 128 runs.

JoptJopt
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K-means++, Effect on K-means outcome, Example 2

4 2 0 2 44
3
2
1
0
1
2
3
4

0 2 4 6 8 10
step

0
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80

J

A

B

C

D

2

6

√
40

Suppose A has been selected as the
first cluster centre ( |w).
The points B, C, D will be selected to
be the second cluster centre with odds
B : C : D = 4 : 36 : 40. Hence the
probabilities of being selected are:

p(B) = 1/20,
p(C) = 9/20,
p(D) = 1/2.

The algorithm outcome can be summarized as follows:
K-means output value of J odds (K-means++) odds (standard init.)
Minimum 1 36 1/20 1/3
Minimum 2 4 19/20 2/3
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K-means++, Effect on K-means outcome, Example 2

4 2 0 2 44
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Suppose we let the points C and D go
further away from A and B, with
|AC| = |BD| = w (w ≥ 2).

Using the same arguments as before,

p(B) = 4/Z,
p(C) = w2/Z,
p(D) = (w2 + 4)/Z,

(Z is the normalization constant),
and we arrive at the result summarized
in this table:

K-means output value of J odds (K-means++) odds (standard init.)

Minimum 1 w2 2

w2 + 4
1/3

Minimum 2 4 1− 2

w2 + 4
2/3
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K-means++, Effect on K-means outcome, Example 2

The expectation E(J) of J is (w ≥ 2):

E(J) = w2 2

w2 + 4
+ 4

(
1− 2

w2 + 4

)
= 6− 16

w2 + 4
(K-means++) (10)

E(J) =
w2 + 8

3
(standard initialization) (11)

There is a striking difference between the two as w increases:
K-means++ standard init.

E(J) for w = 2 4 4
E(J) for w = 6 5.6 14.7
E(J) for w →∞ 6 ∞

K-means output value of J odds (K-means++) odds (standard init.)

Minimum 1 w2 2

w2 + 4
1/3

Minimum 2 4 1− 2

w2 + 4
2/3
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K-means Generalizations (K-medians, K-medoids, . . . )

K-means can be generalized for minimizing criterion other than squared Euclidean.
Given:
T = {xl}L

l=1 the set of observations
K the desired number of cluster prototypes
d(·, ·) ’distance function’ (not necessarily a metric)

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

1. Initialize the cluster centres {ck}K
k=1 (e.g. by random selection from the data points T ,

without replacement)
2. Assignment optimization (assign to closest etalon):

Tk = {x ∈ T : ∀j, d(x, ck) ≤ d(x, cj)} (∀k = 1, 2, ...,K) (12)
3. Prototype optimization:

ck =


argmin

c

∑
x∈Tk

d(x, c) if |Tk| > 0

re-initialize if Tk = ∅
(∀k = 1, 2, ...,K) (13)

4. Terminate if ∀k : T t+1
k = T t

k , otherwise goto 2
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K-means Generalization: K-medians

Given:
T = {xl}L

l=1 the set of observations, x ∈ RD

K the desired number of cluster prototypes
d(·, ·) ‖c− x‖1 =

∑D
i=1 |ci − xi| (L1 metric)

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

1. Initialize the cluster centres {ck}K
k=1 (e.g. by random selection from the data points T ,

without replacement)
2. Assignment optimization (assign to closest etalon):

Tk = {x ∈ T : ∀j, d(x, ck) ≤ d(x, cj)} (∀k = 1, 2, ...,K) (14)

3. Prototype optimization:

ck =

{
median{Tk}
re-initialize if Tk = ∅

(∀k = 1, 2, ...,K) (15)

4. Terminate if ∀k : T t+1
k = T t

k , otherwise goto 2
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K-means Generalization: Clustering Strings

Given:
T = {xl}L

l=1 observations are strings
K the desired number of cluster prototypes
d(s1, s2) Levenshtein distance, number of edit operations to transform s1 to s2

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

1. Initialize the cluster centres {ck}K
k=1 (e.g. by random selection from the data points T ,

without replacement)
2. Assignment optimization (assign to closest etalon):

Tk = {x ∈ T : ∀j, d(x, ck) ≤ d(x, cj)} (∀k = 1, 2, ...,K) (16)

3. Prototype optimization:

ck =


argmin

c

∑
x∈Tk

d(x, c) if |Tk| > 0

re-initialize if Tk = ∅
(∀k = 1, 2, ...,K) (17)

4. Terminate if ∀k : T t+1
k = T t

k , otherwise goto 2
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K-means Generalization: Clustering Strings, Notes

� the calculation of d(·, ·) may be non trivial

� it may be hard to minimize
∑

x∈Tk
d(x, c) over the space of all strings. The

minimization may be restricted to c ∈ T .

� is the algorithm guaranteed to terminate if step 2 (step 3) is only improving J , not
finding the minimum (given Tk or ck), respectively?
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K-means Generalization: Euclidean Clustering

Given:
T = {xl}L

l=1 the set of observations, x ∈ RD

K the desired number of cluster prototypes
d(·, ·) ‖c− x‖ (L2 metric)

Output:
{ck}K

k=1 the set of cluster prototypes (etalons)
{Tk}K

k=1 the clustering (partitioning) of the data
∪K

k=1Tk = T , Ti ∩ Tj = for i 6= j

1. Initialize the cluster centres {ck}K
k=1 (e.g. by random selection from the data points T ,

without replacement)
2. Assignment optimization (assign to closest etalon):

Tk = {x ∈ T : ∀j, d(x, ck) ≤ d(x, cj)} (∀k = 1, 2, ...,K) (18)
3. Prototype optimization: no closed-form solution for geometric median. Use e.g.

iterative Weiszfeld’s algorithm.

ck =


argmin

c

∑
x∈Tk

‖x− c‖ if |Tk| > 0

re-initialize if Tk = ∅
(∀k = 1, 2, ...,K) (19)

4. Terminate if ∀k : T t+1
k = T t

k , otherwise goto 2
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Weiszfeld Algorithm for Computing Geometric Median

� Uses iteratively re-weighted least squares
� Given xi ∈ RD (i = 1, 2, .., I), the geometric median m ∈ RD:

m = argmin
m′

I∑
i=1

‖xi −m′‖ . (20)

� Algorithm:
1. t = 0. Initialize m(0) (e. g. take the mean of xi’s)
2. Compute weights wi:

wi =
1

‖xi −m(t)‖
(i = 1, 2, ..., I) (21)

3. Obtain new estimate for m as a weighted average of xi’s:

m(t+1) =

∑I
i=1wixi∑I

i=1wi

(22)

4. Finish if the termination condition is met. Otherwise, t← t+ 1 and goto 2.
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