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A Linear Classifier

Classification according to signum of an affine function of x:

q(x) = sign(w - x + b)

A solution for {w, b} correctly classifying the training set:

w-X+b=0
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Maximum Margin Linear Classifier C -
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Let d(x) denote the distance of a point x € T from the training set T to the decision
boundary of a linear classifier given by parameters (w, b).

The margin m of a linear classifier (w, b) is defined as follows:

(i) If the classifier classifies all data correctly then m = 2 minygc7 d(x).
Points x € T safisfying m = 2d(x) are called support vectors.

(ii) If the classifier has non-zero error on T then m = 0.

Goal: Find the classifier (w*,b*) maximizing the margin. Vapnik justifies the use of
maximum margin from the viewpoint of Structural Risk Minimization.

Margin of a classifier (w,b): Maximum margin classifier (w*, b*):
A

class 1 ®

class —1
o
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¢ Let us define signed distance d(x,y) of a point x belonging to class y € {1, —1} to the
decision boundary of classifier (w,b):

Maximizing Margin, Formulation

y(w-x + b) (2)

d(X7 y) —

¢ We search for (w, b) such that d(x,y) > 0 for all training data (all training points are
in their class’ half-space). This is equivalent to y(w -x+b) > 0.

A class 1 o
O Optimization task:
® class —1
® ®
w™,b") = argmax min 2d(x,
O S ® o ( ) gvv,b (x,y)ET (%,9)
o ¢ .
subject to:
® PY °
y(w-x+b) > 0,V(x,y) €T ©

4/38
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® There is a scale ambiguity in the parameters (w,b). Any feasible (w,b) (that is,
satisfying Eq. (C)) can be multiplied by a positive constant (w,b) — (ow, ob), and:

(i) feasibility does not change, as

ylow -x+ob) =oy(w-x+b) >0< y(w-x+0b) >0, and (3)

(ii) signed distances do not change, as

O Optimization task:
® class —1
® ®
w™,b") = argmax min 2d(x,
o ® o (w7, 07) = argmax ey 24008)
®
o ¢ subject to:
®
o ¢ yw-x+b)>0,Yx,9)eT  (C)
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Maximizing Margin, Fixing Scale

6/38
¢ Constraints y(w - x + b) > 0 are equivalent to y(w - x + b) > e (with € > 0)
¢ Break the scale ambiguity by setting ¢ = 1:
(W*,b*) = argmax min 2d(x,y)
W,b (X7y)€7-
subject to: y(w-x+0b) > 1,V(x,y) € T (5)
A class 1
Optimization task (original):
class —1
) (w1 n_2d(x,)
w*,b") = argmax min X,
® gw,b (x,9)€T Y
subject to:
° y(w-x+0)>0,¥(x,9) €T  (C)
y(w-x+b
dx,y) = XD
g [w
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Maximizing Margin, Final Optimization Formulation (1)
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¢ That is, all points must be outside the strip delineated by the two lines w-x+b=1
and w - x4+ b = —1. The width of this strip is ||v2v—|| It follows that the maximum margin
m* is
m* = max min 2d(x,y) = max —
w,b (x,4)ET w,b ||wl]
subject to: y(w-x+0b) > 1,V(x,y) € T (6)

A class 1

O Optimization task (original):

® class —1
° ) (w*,b) i 2d(x,)
PY w',b") = argmax min X,
o ® %v,b (x,y)€T Y
S ¢ .
subject to:
o Py ®
O y(w-x+b) >0,V(x,y) €T (O
y(w-x+b
dx.y) = LX)
. [
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¢ That is, all points must be outside the strip delineated by the two lines w-x+b=1
and w - x4+ b = —1. The width of this strip is ||v2v—|| It follows that the maximum margin
m* is
« : 2
m* = max min 2d(x,y) = max —
w,b (x,y)ET wb ||wl|
subject to: y(w-x+0b) > 1,V(x,y) € T (7)
2 , 1 5
¢ There holds: argmaxm = argmin |w|| = argm1n§||w|| . Therefore, the (w*, b*)
w N4 w w
maximizing the margin are:
* 1ok . 1 2
(W*,b") = argmin _||w||
w,b 2
(w,b)
subject to: y(w-x+0b) > 1,V(x,y) € T (8)

¢ This is a Quadratic Programming (QP) problem (more generally, it is minimization of a
convex function on a convex domain.)
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SVM, Example (1D)

class —1 class 1
@ @ @ @ >
—2 0 2 3 x

gy

w-04+b< -1

; N
feasible region

9/38
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wr+b=x—-1=0
class —1 i class 1
-9 0 | 2 3 X
w
w-04+b6< -1
(w*,b*) = argmin,, , sw?

w*=1,b"= -1
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The derived optimization problem for w and b is
* 7k . 1 2
(W*,b") = argmin _||w||
(w,b) 2
subject to: y(w-x+0b) > 1,V(x,y) €T (9)

It is called primal problem. We will also soon derive the dual problem. For now, note that
the above optimization task can be equivalently regarded as solving an unconstrained
problem (this observation will become handy when deriving the dual problem):

1 A
(w*,b*) = argmin 5y|wy|2+ > f(x,y,w,b) o, where (10)
(w.b) (x,y)ET _
(0 ifyw-x+0b)>1, 5
fx:y,w,b) = { 00, otherwise % (11)
=
0 | >
b yw x+b)

Note that f(x,y,w,b) for a given (x,y) is a convex function of w, b.
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Start with just discussed primal formulation. Let 7 = {(x1,v1), (X2,%2), ---, (XN, YyN)} be
the training set. We want to solve

(W™, 0%) = argmln{w|2 + Zf Xis Yi, W, b)}, where

(w,b) i—1

0 ify(w-x;+b)>1
o0, otherwise

oo = |

This is the same as («;'s are non-negative multipliers):

(12)

( )
! N
(W*,b") = argmin < —||W||2 + max (— a;ly;(w - x; +b) — 1]) . (13)
b S\ =
\ 1€{1,..,N} J
because
yi(w-x;+0) >1 = max(—a;yi(w-x;+0) —1]) =0 for a; =0, (14)
yi(w-x; +0) <1 = max(—a;ly;(w-x; +b) — 1]) = oo for a; = o0, (15)
yi(W-x; +b) =1 = max(—aq;|y;(w-x;+b) —1]) =0 for any a; > 0. (16)

22
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This is in turn the same as
| N
(w*,b") = argmin max {2|w||2 - Zai[yi(w - X; +b) — 1]} : (17)
w,b if‘é% i=1
ie{1,..,N}

There holds, in full generality, that max, min, f(p, ¢) < min, max, f(p, q). For our case,

N
. L, 9
min max {2||W| —Zai[yi(w-xi+b) — 1]} >

W,b {Oéz} —1
a; >0 =
ie{1,..,N}
1 N
= mi£{2|wl2—2ai[yi<w~xi+b>—11} (18)
wr v i=1

OA,L'ZO
ie{l,..,N}

This is the essence of converting the primal problem to the dual one. And, our case is even
better: strong duality holds, and the two terms are equal (duality gap is zero). Denote the
inner term by L(w,b,«) (corresponds to what's commonly known as the Lagrangian):

L(w,b,a) = %HWHQ =Y al(w x4 0) — 1 (19)
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N
1
L(w,b,a) = 5““’“2 =) olyi(w x4+ b) — 1] (20)
i=1
We want to find argmax,,~qminy,, L(w, b, ). First, for fixed o, find miny , L(w, b, a):

Y N N
N
— = ;=0 (22)
i=1
Put this to Lagrangian:
| N
L(w,b,a) = §HWHQ - Z%[%(W X +b) — 1] = (23)
i=1

N

N
- _HWH2 (Z&zyzfo) 'W_Z@iyib+z@i (24)
TS Zaz S g (25)
1=1

’L]l
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The dual optimization problem:
N |
a = argmax | min L(w, b, o) | = argmax o — — QO Y X - X 26
gn (W,b ( )) gr ; : ;1 JYiYXi - X (26)
subject to: Zoziyi =0; a; >0, Vie{1,2,....,N} (27)

¢ Number of optimization variables «;'s is N (the number of training data). But at the
solution, all «;'s but those of support vectors are zero.
® Once the solution is obtained, the primal variables can be computed as

N
W = Z Qi YiX; only support vectors («; > 0) contribute (28)
i=1
y°[w - x° + b] = 1 for any support vector (x°,y°) = b=y° —w-x° (29)
¢ The discriminant function w - x + b thus takes the form (P are indices of all support
vectors):
W-X+b= Z aiyi(xi - x) +y° — Z a;yi(x; - x7) (30)
iEP i€P

constant, inc?(er[)endent of x
¢ Both the dual classification problem and the discriminant function involve data points
only in the form of dot products.
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Consider the 3 points as below

Objective: maximize

- T r - -
Qq Y1y1X1 - X1 Y1Y2X1 - X2 Y1Ys3X1 - X3 aq
1
Q]+ Q2 +03— 35 | Q2 Y2y1X2 - X1 Y2Y2X2 - X2 Y2Y3X2 - X3 %)
| a3 | | Ysy1X3 - Xy Ysy2Xs3 - Xz YsysXz- X3z | | 3

subject to: aj,a0, a3 >0; a1 +as —ag =0

A
class 1 ®x; =(1,2)
®x; =(0,1)
>
®x3=(0,—1)
class —1
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Consider the 3 points as below

Objective: maximize
— - T - - -

1 1 2 1 1
Oél—|—052—|-043—% a9 2 5 2 a9
i a3 i i 1 2 1 1 L 3 |

subject to: aj,a9, a3 >0; a1 +as —ag =0
A
class 1 ® x> = (1,2)
Ox = (O, 1)

>

.Xg = (O, —1)
class —1
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Substitute vz = a1 + a2 and search for solution as a problem in a7, ag. After some
straightforward computation, the original problem turns to:

a] e nla

subject to: a1, as > 0. Solution: (a7, as) = (%,O), g = % +0 = %

N|—

maximize 2(a; + asg) —

A ”s > feallsible region
2 L -
class 1 ® x; = (1,2)
15 |
'Xl = (0, 1) al
1-30
> a2 0.5
140
®x3 = (O, —1) °l
class —1 0
a4

a1 global max outside
feasible region
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Result: (aq, o, as) = (%, 0, %) The support vectors are x; and x3 because their a; > 0.
Vector w = 7. 4y ayix; = 5(0,1) — 5(0, =1) = (0,1).
Offset b=9y° —wx” =1 —wx; = —1 — wxs =0.

Decision boundary (0,1)Y -x=10.

=»  feasible region

-

class 1 ®x; =(1,2) s
C’ X1 — (O, 1) 1
1-30
- - - - = aQ 0.5
1-40
C. X3 — (O, —1) °

aq global max outside
feasible region
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If the data are not linearly separable, slack variables &; need to be introduced.
¢ Position and size of margin is implied by w and b, as before.
¢ If a point (x,y) fulfills the condition y(w - x + b) > 1 then no penalty is paid.

¢ Otherwise, the condition is relaxed to y(w - x4+ b) > 1 — £ and penalty C - £ is paid

N
1
(W*,b*) = argmin—||w[*+C > & (31)

(w,b) 2 i=1
subject to:
yi(W-x; +b) >1—&, (32)
& > 0, (33)

Vi=1,..,N
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The primal problem
| N
(w*,b*) = argmin§HwH2 +CY &
(w,b) i—1
subject to: y;(w-x;+b)>1—-&, Vi=1,...N (34)
&>0 Yi=1,.,N (35)
The dual problem:
N | N
o = argmax § » i =5 Y oYX X (36)
1=1 1,7=1
subject to: Z a;y; =0 (37)

0<a; <C, Vie{l,2,..,N} (38)
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The classitier 1s a separating hyperplane.

Most “important’ training points are support vectors; they
define the hyperplane.

Quadratic optimization algorithms can identity which training
points X, are support vectors with non-zero Lagrangian
multipliers /.

Both in the dual formulation of the problem and in the solution
training points appear only inside inner-products.
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Who really need linear classitiers 23/38

Datasets that are linearly separable with some noise, linear SVM
work well:

But if the dataset is non-linearly separable?

*—O *—0— *0—0—0—0— 0>
0 X

How about... mapping data to a higher-dimensional space:
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Non-linear SVMs: Feature spaces
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General idea: the original space can always be mapped to some

higher-dimensional feature space where the training set becomes
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The SVM only relies on the inner-product between vectors x;x;

It every datapoint is mapped into high-dimensional space via
some transformation ®: x — ¢(x), the inner-product becomes:

K(Xiaxj>: 9(X;) "P(Xj

K(x;,x;) 1s called the kernel function.

For SVM, we only need specity the kernel K(x;,x;), without need

to know the corresponding non-linear mapping, ©(x).
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The dual problem:
N
Maximizing: L(h)=)h —%h .D-h
i=1

Subjectto:h-y =0
0<h<C
where D;; =y, y;K(X;,X;)

Optimization techniques for finding /,’s remain the same!

The solution is:

W= Z hyio(X;)

ieSV

f(X)=w -p(X)+b
= > hyK(x;,X)+b"

ieSV
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For the example in the previous figure:

0 The non-linear mapping

X = p(X) = (X,X°)

0 The kernel

o(%) = (X, %), o(x;)=(x;,x})
KX, X;) =o(X) - o(X;)
=xixj(1+xixj)

Where is the benefit?
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Examples of Kernel Trick (2)

Polynomial kernel of degree 2 in 2 variables

a0 The non-linear mapping:

X = (X1’ Xz)
o(X) = (1, \/EXP \/§X21 X121 Xzz’\/zxﬁ(z)
0 The kernel

(P(X) = (1 \/Exli \/EXZ, X12’ Xz2 , \/Exlxz)
o(y) = L2y, V2Y,, Y2, V2, V2Y,Y,)

KX y) =0(x)-p(y)
= (L+x-y)’

28/38
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Gaussian kernel: % =X [/ 252
K(XI,XJ):e ”X| XJ” (o2

0 The mapping is of infinite dimension:

o(X)=(...,0,(X),..), for weR"

2 _jwx

@, (X)=Ae""e
KOY) = [0, (99" (y)do

The moral: very high-dimensional and complicated non-linear mapping can
be achieved by using a simple kernel!
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What Functions are Kernels? 30/38

For some functions K(x;,%;) checking that K(x;,X,)= ¢(x;) ¢(X;)
can be cumbersome.

Mercer’s theorem:

Every semi-positive definite symmetric function is a kernel
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Linear kernel: K (Xi : Xj) =X Xj
. . . p
Polynomial kernel of power p: K (Xi : Xj ) — (]_-|- )(i . Xj )

Gaussian kernel: K (Xi | Xj) _ e_”Xi_Xj||2/20'2

0 In the form, equivalent to RBFNN, but has the advantage of that the center of basis
functions, 1.e., support vectors, are optimized in a supervised.

Two-layer perceptron: K (Xi , Xj) — ta_nh(aXi X+ f)
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Let d € N and x = [x1, x2, ...,a:D]T c RP.

Let ¢4(x) denote the mapping which lifts x to the space containing all monomials of degree
d’, 1 <d <din the components of x:

For example, when x = [z1, 5] € R2,

1(x) = :CB175L‘2]T, (39)
: T

¢2(X) — _CEl,ZIJQ,CC%,xlCEQ,SU%] ) (40)
: T

¢3(X) = _$1,$2,$%,$1$2,x%ﬁi”ﬂ?%@,xﬂ%afvg] (41)

d+D—1
d/

L_il:(d,—'_f;_l)' (42)

d'=1

The number of monomials of degree d’ of x € R” is ( ) The dimensionality L of the

output space of ¢4(x) is thus
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Feature space dimensionality D, lifting by ¢4(x)

dimensionality of feature space after lifting (L)

d
D 1] 2 3 4 5 6 I 3
1 1] 2 3 4 5 6 I 3
2 21 b 9| 14 20 27 35 44
3 31 9| 19| 34 55 33 | 119 164
4 4 |14 | 34| 69| 126 | 209 | 329 494
5 5120 | 55| 125 | 251 | 461 | 791 1236
6 6|27 | 831|209 | 461 | 923 | 1715 | 3002
I 7| 35| 119 | 329 | 791 | 1715 | 3431 | 6434
3 3|44 | 164 | 494 | 1286 | 3002 | 6434 | 12869
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Lifting by Polynomial Mapping of Degree d, Example

d =1, dim(¢y(x)) = 2

support vectors : 3

16

12

d = 2, dim(gbd(x)) 5

support vectors : 5

f(x) =w-¢q(x)+b

34/38

16

12

|

I
=
(®)]
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d =3, dim(¢gq(x)) =9 d =4, dim(¢q(x)) = 14
support vectors : 5 support vectors : 6

T
[0} = =
N (0)}
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Main features:

0 By using the kernel trick, data is mapped into a high-
dimensional feature space, without introducing much
computational effort;

0 Maximizing the margin achieves better generation
performance;

0 Soft-margin accommodates noisy data;
0 Not too many parameters need to be tuned.

Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)
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SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and
gained increasing popularity in late 1990s.

SVMs are currently among the best performers for many benchmark datasets.
SVM techniques have been extended to a number of tasks such as regression
[Vapnik ez al. ’97].

Most popular optimization algorithms for SVMs are SMO [Platt ’99] and
SVMight [Joachims’ 99], both use decomposition to handle large size datasets.

It seems the kernel trick is the most attracting site of SVMs. This idea has now
been applied to many other learning models where the inner-product is
concerned, and they are called ‘kernel’ methods.

Tuning SVMs remains to be the main research focus: how to an optimal kernel?
Kernel should match the smooth structure of data.
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Online demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/
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