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Overview.
• K-means clustering 
• Gaussian mixtures
• Maximum likelihood and EM
• Latent variables: EM revisited
• Bayesian Mixtures of Gaussians 
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Old Faithful
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Old Faithful Data Set

Duration of eruption (minutes)

Time 
between
eruptions 
(minutes)



BCS Summer School, Exeter, 2003 Christopher M. Bishop

K-means Algorithm
• Goal: represent a data set in terms of K clusters each of 

which is summarized by a prototype
• Initialize prototypes, then iterate between two phases:

– E-step: assign each data point to nearest prototype
– M-step: update prototypes to be the cluster means

• Simplest version is based on Euclidean distance
– re-scale Old Faithful data
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Responsibilities
• Responsibilities assign data points to clusters

such that 

• Example: 5 data points and 3 clusters
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K-means Cost Function

prototypesresponsibilities

data
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Minimizing the Cost Function
• E-step: minimize    w.r.t.

– assigns each data point to nearest prototype
• M-step: minimize    w.r.t        

– gives

– each prototype set to the mean of points in that cluster
• Convergence guaranteed since there is a finite number 

of possible settings for the responsibilities
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Limitations of K-means
• Hard assignments of data points to clusters – small shift 

of a data point can flip it to a different cluster
• Not clear how to choose the value of K
• Solution: replace ‘hard’ clustering of K-means with ‘soft’ 

probabilistic assignments
• Represents the probability distribution of the data as a 

Gaussian mixture model
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The Gaussian Distribution
• Multivariate Gaussian

• Define precision to be the inverse of the covariance

• In 1-dimension 

mean covariance
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Likelihood Function
• Data set

• Assume observed data points generated independently

• Viewed as a function of the parameters, this is known as 
the likelihood function
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Maximum Likelihood
• Set the parameters by maximizing the likelihood function
• Equivalently maximize the log likelihood
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Maximum Likelihood Solution
• Maximizing w.r.t. the mean gives the sample mean

• Maximizing w.r.t covariance gives the sample covariance
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Gaussian Mixtures
• Linear super-position of Gaussians

• Normalization and positivity require

• Can interpret the mixing coefficients as prior probabilities
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Example: Mixture of 3 Gaussians
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Contours of Probability Distribution
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Surface Plot
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Sampling from the Gaussian
• To generate a data point:

– first pick one of the components with probability 
– then draw a sample       from that component

• Repeat these two steps for each new data point
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Synthetic Data Set
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Fitting the Gaussian Mixture
• We wish to invert this process – given the data set, find 

the corresponding parameters:
– mixing coefficients
– means 
– covariances

• If we knew which component generated each data point, 
the maximum likelihood solution would involve fitting 
each component to the corresponding cluster

• Problem: the data set is unlabelled
• We shall refer to the labels as latent (= hidden) variables
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Synthetic Data Set Without Labels
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Posterior Probabilities
• We can think of the mixing coefficients as prior 

probabilities for the components
• For a given value of     we can evaluate the 

corresponding posterior probabilities, called 
responsibilities

• These are given from Bayes’ theorem by
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Posterior Probabilities (colour coded)
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Posterior Probability Map
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Maximum Likelihood for the GMM
• The log likelihood function takes the form

• Note: sum over components appears inside the log
• There is no closed form solution for maximum likelihood
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Problems and Solutions
• How to maximize the log likelihood

– solved by expectation-maximization (EM) algorithm
• How to avoid singularities in the likelihood function

– solved by a Bayesian treatment
• How to choose number K of components

– also solved by a Bayesian treatment
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EM Algorithm – Informal Derivation
• Let us proceed by simply differentiating the log likelihood
• Setting derivative with respect to      equal to zero gives

giving

which is simply the weighted mean of the data
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EM Algorithm – Informal Derivation
• Similarly for the covariances

• For mixing coefficients use a Lagrange multiplier to give
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EM Algorithm – Informal Derivation
• The solutions are not closed form since they are coupled
• Suggests an iterative scheme for solving them:

– Make initial guesses for the parameters
– Alternate between the following two stages:

1. E-step: evaluate responsibilities
2. M-step: update parameters using ML results
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EM – Latent Variable Viewpoint 
• Binary latent variables                   describing which 

component generated each data point 
• Conditional distribution of observed variable

• Prior distribution of latent variables

• Marginalizing over the latent variables we obtain
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Expected Value of Latent Variable
• From Bayes’ theorem
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Complete and Incomplete Data

complete incomplete
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Latent Variable View of EM
• If we knew the values for the latent variables, we would 

maximize the complete-data log likelihood

which gives a trivial closed-form solution (fit each 
component to the corresponding set of data points)

• We don’t know the values of the latent variables
• However, for given parameter values we can compute 

the expected values of the latent variables
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Expected Complete-Data Log Likelihood
• Suppose we make a guess         for the parameter values 

(means, covariances and mixing coefficients)
• Use these to evaluate the responsibilities
• Consider expected complete-data log likelihood 

where responsibilities are computed using 
• We are implicitly ‘filling in’ latent variables with best guess
• Keeping the responsibilities fixed and maximizing with 

respect to the parameters give the previous results
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EM in General
• Consider arbitrary distribution        over the latent variables
• The following decomposition always holds

where
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Decomposition
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Optimizing the Bound
• E-step: maximize    with respect to 

– equivalent to minimizing KL divergence
– sets         equal to the posterior distribution

• M-step: maximize bound with respect to
– equivalent to maximizing expected complete-data log 

likelihood 
• Each EM cycle must increase incomplete-data likelihood 

unless already at a (local) maximum
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E-step



BCS Summer School, Exeter, 2003 Christopher M. Bishop

M-step
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