Latent Variables, Mixture Models and EM

Christopher M. Bishop

Microsoft Research, Cambridge

BCS Summer School Exeter, 2003

Overview.

- K-means clustering
- Gaussian mixtures
- Maximum likelihood and EM
- Latent variables: EM revisited
- Bayesian Mixtures of Gaussians

Old Faithful

Old Faithful Data Set

K-means Algorithm

- Goal: represent a data set in terms of K clusters each of which is summarized by a prototype μ_k
- Initialize prototypes, then iterate between two phases:
 - E-step: assign each data point to nearest prototype
 - M-step: update prototypes to be the cluster means
- Simplest version is based on Euclidean distance
 - re-scale Old Faithful data

Responsibilities

Responsibilities assign data points to clusters

$$r_{nk} \in \{0,1\}$$

such that

$$\sum_{k} r_{nk} = 1$$

Example: 5 data points and 3 clusters

$$(r_{nk}) = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight)$$

K-means Cost Function

Minimizing the Cost Function

- E-step: minimize J w.r.t. r_{nk}
 - assigns each data point to nearest prototype
- M-step: minimize J w.r.t μ_k
 - gives

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{kn} \mathbf{x}_n}{\sum_n r_{kn}}$$

- each prototype set to the mean of points in that cluster
- Convergence guaranteed since there is a finite number of possible settings for the responsibilities

Limitations of K-means

- Hard assignments of data points to clusters small shift of a data point can flip it to a different cluster
- Not clear how to choose the value of K
- Solution: replace 'hard' clustering of K-means with 'soft' probabilistic assignments
- Represents the probability distribution of the data as a Gaussian mixture model

The Gaussian Distribution

Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi|\boldsymbol{\Sigma}|)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$
 mean covariance

Define precision to be the inverse of the covariance

$$\Lambda = \Sigma^{-1}$$

In 1-dimension

$$au = rac{1}{\sigma^2}$$

Likelihood Function

Data set

$$D = \{\mathbf{x}_n\} \quad n = 1, \dots, N$$

Assume observed data points generated independently

$$p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

 Viewed as a function of the parameters, this is known as the likelihood function

Maximum Likelihood

- Set the parameters by maximizing the likelihood function
- Equivalently maximize the log likelihood

$$\ln p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \ln |\boldsymbol{\Sigma}| - \frac{N}{2} \ln(2\pi)$$
$$-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

Maximum Likelihood Solution

Maximizing w.r.t. the mean gives the sample mean

$$\mu_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

Maximizing w.r.t covariance gives the sample covariance

$$\Sigma_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}})^{\mathsf{T}}$$

Gaussian Mixtures

Linear super-position of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Normalization and positivity require

$$\sum_{k=1}^K \pi_k = 1 \qquad 0 \leqslant \pi_k \leqslant 1$$

Can interpret the mixing coefficients as prior probabilities

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

Example: Mixture of 3 Gaussians

Contours of Probability Distribution

Sampling from the Gaussian

- To generate a data point:
 - first pick one of the components with probability π_k
 - then draw a sample \mathbf{x}_n from that component
- Repeat these two steps for each new data point

Synthetic Data Set

Fitting the Gaussian Mixture

- We wish to invert this process given the data set, find the corresponding parameters:
 - mixing coefficients
 - means
 - covariances
- If we knew which component generated each data point, the maximum likelihood solution would involve fitting each component to the corresponding cluster
- Problem: the data set is unlabelled
- We shall refer to the labels as latent (= hidden) variables

Synthetic Data Set Without Labels

Posterior Probabilities

- We can think of the mixing coefficients as prior probabilities for the components
- For a given value of x we can evaluate the corresponding posterior probabilities, called responsibilities
- These are given from Bayes' theorem by

$$\gamma_k(\mathbf{x}) \equiv p(k|\mathbf{x}) = \frac{p(k)p(\mathbf{x}|k)}{p(\mathbf{x})}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Posterior Probabilities (colour coded)

Posterior Probability Map

Maximum Likelihood for the GMM

The log likelihood function takes the form

$$\ln p(D|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Note: sum over components appears inside the log
- There is no closed form solution for maximum likelihood

Problems and Solutions

- How to maximize the log likelihood
 - solved by expectation-maximization (EM) algorithm
- How to avoid singularities in the likelihood function
 - solved by a Bayesian treatment
- How to choose number K of components
 - also solved by a Bayesian treatment

EM Algorithm – Informal Derivation

- Let us proceed by simply differentiating the log likelihood
- Setting derivative with respect to μ_i equal to zero gives

$$-\sum_{n=1}^{N} \frac{\pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}{\sum_{k} \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})} \boldsymbol{\Sigma}_{j}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{j}) = 0$$

giving

$$\mu_j = rac{\sum\limits_{n=1}^{N} \gamma_j(\mathbf{x}_n) \mathbf{x}_n}{\sum\limits_{n=1}^{N} \gamma_j(\mathbf{x}_n)}$$

which is simply the weighted mean of the data

EM Algorithm – Informal Derivation

Similarly for the covariances

$$\Sigma_j = \frac{\sum_{n=1}^{N} \gamma_j(\mathbf{x}_n)(\mathbf{x}_n - \boldsymbol{\mu}_j)(\mathbf{x}_n - \boldsymbol{\mu}_j)^{\mathsf{T}}}{\sum_{n=1}^{N} \gamma_j(\mathbf{x}_n)}$$

For mixing coefficients use a Lagrange multiplier to give

$$\pi_j = \frac{1}{N} \sum_{n=1}^{N} \gamma_j(\mathbf{x}_n)$$

EM Algorithm – Informal Derivation

- The solutions are not closed form since they are coupled
- Suggests an iterative scheme for solving them:
 - Make initial guesses for the parameters
 - Alternate between the following two stages:
 - 1. E-step: evaluate responsibilities
 - 2. M-step: update parameters using ML results

EM – Latent Variable Viewpoint

- Binary latent variables $\mathbf{z} = \{z_{kn}\}$ describing which component generated each data point
- Conditional distribution of observed variable

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)^{z_k}$$

Prior distribution of latent variables

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Lambda}_k)$$

Expected Value of Latent Variable

From Bayes' theorem

$$E[z_{ni}] = \frac{\sum_{z_{ni}} z_{ni} [\pi_{i} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})]^{z_{ni}}}{\sum_{z_{ni}} [\pi_{i} p(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})]^{z_{ni}}}$$

$$= \frac{\pi_{i} \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})}$$

$$= \gamma_{i}(\mathbf{x}_{n})$$

Complete and Incomplete Data

Latent Variable View of EM

 If we knew the values for the latent variables, we would maximize the complete-data log likelihood

$$\ln p(\mathbf{x}, \mathbf{z} | \boldsymbol{\theta}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

which gives a trivial closed-form solution (fit each component to the corresponding set of data points)

- We don't know the values of the latent variables
- However, for given parameter values we can compute the expected values of the latent variables

Expected Complete-Data Log Likelihood

- Suppose we make a guess $\theta_{\rm old}$ for the parameter values (means, covariances and mixing coefficients)
- Use these to evaluate the responsibilities
- Consider expected complete-data log likelihood

$$\mathsf{E}_{\mathbf{z}}[\ln p(\mathbf{x},\mathbf{z}|\boldsymbol{\theta})] = \sum_{n=1}^{N} \sum_{i=1}^{K} \gamma_i(\mathbf{x}_n) \left\{ \ln \pi_i + \ln \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_i,\boldsymbol{\Sigma}_i) \right\}$$

where responsibilities are computed using $heta_{
m old}$

- We are implicitly 'filling in' latent variables with best guess
- Keeping the responsibilities fixed and maximizing with respect to the parameters give the previous results

EM in General

- Consider arbitrary distribution q(z) over the latent variables
- The following decomposition always holds

$$\ln p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathsf{KL}(q||p)$$

where

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \ln \left\{ \frac{p(\mathbf{x}, \mathbf{z} | \theta)}{q(\mathbf{z})} \right\}$$

$$\mathsf{KL}(q\|p) = -\sum_{\mathbf{z}} q(\mathbf{z}) \ln \left\{ \frac{p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})}{q(\mathbf{z})} \right\}$$

Decomposition

Optimizing the Bound

- E-step: maximize \mathcal{L} with respect to $q(\mathbf{z})$
 - equivalent to minimizing KL divergence
 - sets $q(\mathbf{z})$ equal to the posterior distribution $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})$
- M-step: maximize bound with respect to θ
 - equivalent to maximizing expected complete-data log likelihood
- Each EM cycle must increase incomplete-data likelihood unless already at a (local) maximum

E-step

M-step

