
Alloy
Specifications using Relational Logic

Radek Mǎŕık

Czech Technical University
Faculty of Electrical Engineering

Department of Telecommunication Engineering
Prague CZ

October 17, 2023

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 1 / 60

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 2 / 60

Alloy Motivation

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 3 / 60

Alloy Motivation

I Am My Own Grandpa - song

The challenge is to create the situation of a man who is his own
grandfather without being incest was committed or time travel was
required.

The lyrics of the song describe the solution.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 4 / 60

Alloy Motivation

I Am My Own Grandpa

Many many years ago, when I was twenty-three,
I was married to a widow as pretty as can be,
This widow had a grown-up daughter who had hair of red,
My father fell in love with her and soon the two were wed.

I’m my own grandpa, I’m my own grandpa.
It sounds funny, I know, but it really is so
I’m my own grandpa.

This made my dad my son-in-law and changed my very life,
For my daughter was my mother, for she was my father’s wife.
To complicate the matter, even though it brought me joy,
I soon became the father of a bouncing baby boy.

My little baby thus became a brother-in-law to dad,
And so became my uncle, though it made me very sad,
For if he was my uncle then that also made him brother
To the widow’s grown-up daughter, who of course was my step-mother.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 5 / 60

Alloy Motivation

. . . by Dwight B. Latham and Moe Jaffe

Father’s wife then had a son who kept them on the run.
And he became my grandchild for he was my daughter’s son.
My wife is now my mother’s mother and it makes me blue,
Because although she is my wife, she’s my grandmother, too.

Oh, if my wife’s my grandmother then I am her grandchild.
And every time I think of it, it nearly drives me wild.
For now I have become the strangest case you ever sawn
As the husband of my grandmother, I am my own grandpa.

I’m my own grandpa, I’m my own grandpa.
It sounds funny, I know, but it really is so I’m my own grandpa.
I’m my own grandpa, I’m my own grandpa.
It sounds funny, I know, but it really is so
I’m my own grandpa.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 6 / 60

Alloy Motivation

I Am My Own Grandpa - Alloy Solution

module grandpa

abstract sig Person {
father: lone Man,

mother: lone Woman }
sig Man extends Person { wife: lone Woman }
sig Woman extends Person { husband: lone Man }
fact Biology { no p: Person | p in p.^(mother+father) }
fact Terminology { wife = ~husband }
fact SocialConvention {

no wife & *(mother+father).mother

no husband & *(mother+father).father }
fun grandpas [p: Person]: set Person {

let parent = mother + father + father.wife + mother.husband |

p.parent.parent & Man }
pred ownGrandpa [m: Man] { m in grandpas[m] }
run ownGrandpa for 4 Person expect 1

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 7 / 60

Alloy Motivation

Alloy - Usage

Alloy is a modeling language for software design (see also Electrum)

??? However, it is not intended for modeling architecture (such as
UML).

It is general enough to be able to model

any domain of individuals,
the relationship between them.

syntax of Alloy 4.2 - 5.1 (watch out for tutorials for 3.x)

Typical Usage Steps
1 Specify model conditions

structures and relations between them
conditions as general facts

2 Find a solution or counterexample

Solution: Find an instance of the model that meets all the conditions
Verification: conjecture construction
- either cannot be refuted
- or a counterexample is found

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 8 / 60

Alloy Basic elements of language

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 9 / 60

Alloy Basic elements of language

Atoms

Everything is built on atoms and relations.

Atom is a primitive entity that is

indivisible: cannot be divided into smaller parts,
immutable: its properties do not change over time,
uninterpreted: has no built-in property,

Relation is a structure that captures the relationships between
atoms.

It is a set of n-tuples,
each n-tuple is a sequence of atoms.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 10 / 60

Alloy Basic elements of language

Signature

Signature introduces a set of atoms.

A declaration defining a set named A

sig A { }
A set can be introduced as a extension of another set,
thus A1 is a subset of the set A.

sig A1 extends A { }
A signature declared independently of any other signature is the
so-called top-level signature.

Extensions of the same signature are mutually disjunct as well as
top-level signatures.

A set can be introduced as a subset of another set

sig A1 in A { }
An abstract signature has no elements except those belonging to its
extensions or subsets.

abstract sig A { }
Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 11 / 60

Alloy Basic elements of language

Signature - an Example

abstract sig Person { }
sig Man extends Person { }
sig Woman extends Person { }
sig Married in Person { }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 12 / 60

Alloy Basic elements of language

Fields

Relations are declared as fields of signatures.

A declaration defining a relation f ,

whose domain is A a
whose range is given by the expression e.

sig A { f: e }

Examples

Binary relation . . . f1 is a subset of A×A

sig A { f1: A }
Ternary relation . . . f2 is a subset of B ×A×A

sig B { f2: A -> A }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 13 / 60

Alloy Basic elements of language

Fields

Relations are declared as fields of signatures.

A declaration defining a relation f ,

whose domain is A a
whose range is given by the expression e.

sig A { f: e }

Examples

Binary relation . . . f1 is a subset of A×A

sig A { f1: A }
Ternary relation . . . f2 is a subset of B ×A×A

sig B { f2: A -> A }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 13 / 60

Alloy Basic elements of language

Multiplicity

It enables to constrain a size of sets.
A multiplicity keyword placed before a signature declaration constrains
the number of elements in the signature’s set

m sig A { f: e }
We can constrain field multiplicity

sig A { f: m e }
sig A { f: e1 m -> n e2 }

Four kinds of multiplicity exist
set: any number,
some: one or more,
lone: zero or one (L),
one: exactly one,

The default keyword, if omitted, is one.
Thus, the following declarations are equivalent:

sig A { f: e }
sig A { f: one e }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 14 / 60

Alloy Basic elements of language

Relations - Example 2

abstract sig Person {
children: set Person,

siblings: set Person,

}
sig Man, Woman extends Person { }
sig Married in Person {

spouse: one Married,

}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 15 / 60

Alloy Basic elements of language

Quantification

Alloy supports a rich collection of quantifiers
all x: S | F : F holds for every x in S,
some x: S | F : F holds for some x in S,
no x: S | F : F holds for no x in S,
lone x: S | F : F holds for at most one x in S,
one x: S | F : F holds for exactly one x in S,

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 16 / 60

Alloy Basic elements of language

Logical Operators

One can use usual logical operators
not ! negation
and && conjunction
or || disjunction
implies => implication
else , alternative
iff <=> iff (equivalence, bi-implication)

An Example
a != b is equivalent to not a = b

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 17 / 60

Alloy Basic elements of language

Sets and Their Operators

Predefined set constants
none : an empty set,
univ : the universal set (contains all the atoms),
iden : the identity (each atom is mapped to itself),

Set operators
+ : union
& : intersection
- : difference
in : subset
= : equality

An example: married men

Married & Man

Set comprehension (CZ vymezená množina)

A set of values of the set S, for which F holds

{ x : S | F }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 18 / 60

Alloy Basic elements of language

Relational Operators

-> arrow (product)
~ transpose
. dot (join)
[] box (join)
^ transitive closure
* reflexive-transitive closure
<: domain restriction
:> range restriction
++ override

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 19 / 60

Alloy Basic elements of language

Product, Transpose

The arrow product p -> q

p and q are two relations,
p -> q is the relation that contains every combination of a tuple from
p and a tuple from q as their concatenation.
An example

Name = { (N0), (N1) }
Addr = { (D0), (D1) }
Book = { (B0) }
Book -> Name -> Addr = { (B0,N0,D0), (B0,N0,D1),

(B0,N1,D0), (B0,N1,D1) }
Transpose ~p

produces a mirror image of relation p
i.e. it revers the order of atoms in every tuple.
An example

example = { (a0,a1,a2,a3), (b0,b1,b2,b3) }
~example = { (a3,a2,a1,a0), (b3,b2,b1,b0) }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 20 / 60

Alloy Basic elements of language

Tuple Dot Join

p.q What is the composition (join) of these two tuples?

p = (s1, . . . , sn)
q = (t1, . . . , tm)
If sn! = t1, then the result is empty.
If sn = t1, then the result is a tuple (s1, . . . , sn−1, t2, . . . , tm)

An example for relations

{(a,b)}.{(a,c)} = {}
{(a,b)}.{(b,c)} = {(a,c)}

What happens in the case {(a)}.{(a)}?
It is not defined!
p.s is defined if and only if p and s are not both unary relations

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 21 / 60

Alloy Basic elements of language

Relation Join, Closures, Relation Restrictions

p.q
p and q are two relations and both are not unary.
p.q is the relation that contains every combination of a tuple from p
and a tuple from q as their join if that exists.

p[q] (box join)
is semantically identical to dot join, but takes its arguments ordered in
the reversed order.

p[q] ≡ q.p

^r = r + r.r + r.r.r + ...

*r = ^r + iden

s<:r contains those tuples of r that start with an element in s
(range(s<:r)=s.r)

r:>s contains those tuples of r that end with an element in s
(domain(r<:s)=r.s)

p++q = p - (domain(q) <: p) + q

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 22 / 60

Alloy Basic elements of language

Dot Join Examples

module grandpa

abstract sig Person {
father: lone Man,

mother: lone Woman }
sig Man extends Person { wife: lone Woman }
sig Woman extends Person { husband: lone Man }
fact Biology { no p: Person | p in p.^(mother+father) }
Man = {(Jirka), (Tomas),(Josef), (Vlada), (Franc)}
Woman = {(Jana), (Lenka), (Tereza), (Olga)}
father = {(Jirka,Tomas), (Lenka,Tomas),(Tomas,Josef),

(Josef, Vlada), (Jana, Franc)}
mother = {(Jirka, Jana), (Jana, Tereza), (Tomas, Olga)}
{(Jirka)}.father = {(Tomas)}
{(Jirka)}.mother = {(Jana)}
{(Jirka)}.father.father = {(Josef)}
{(Jirka)}.father.mother = {(Olga)}
{(Jirka)}.mother.father = {(Franc)}
{(Jirka)}.mother.mother = {(Tereza)}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 23 / 60

Alloy Basic elements of language

Closure Principle Examples

module grandpa

abstract sig Person {
father: lone Man,

mother: lone Woman }
sig Man extends Person { wife: lone Woman }
sig Woman extends Person { husband: lone Man }
fact Biology { no p: Person | p in p.^(mother+father) }
Man = {(Jirka), (Tomas),(Josef), (Vlada), (Franc)}
Woman = {(Jana), (Lenka), (Tereza), (Olga)}
father = {(Jirka,Tomas), (Lenka,Tomas),(Tomas,Josef),

(Josef, Vlada), (Jana, Franc)}
mother = {(Jirka, Jana), (Jana, Tereza), (Tomas, Olga)}
father + mother = {(Jirka,Tomas), (Lenka,Tomas),(Tomas,Josef),

(Josef, Vlada), (Jana, Franc), (Jirka, Jana),

(Jana, Tereza), (Tomas, Olga)}
{(Jirka)}.(father+mother) = {(Tomas), (Jana)}
{(Jirka)}.(father+mother).(father+mother) =

{(Josef), (Olga), (Franc), (Tereza)}
{(Jirka)}.(father+mother).(father+mother).(father+mother) = {(Vlada)}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 24 / 60

Alloy Basic elements of language

Let

Expressions might be simplified.

let x = e | A

A with each occurrence of the variable x replaced by the expression e.

Examples

”A married person has just one spouse.”

sig Married in Person { spouse: one Married }
”Each married man (woman) has a wife (husband).”

all p: Married |

let q = p.spouse |

(p in Man => q in Woman) and

(p in Woman => q in Man)

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 25 / 60

Alloy Basic elements of language

Scalars

Everything in Alloy is a set.

There are no scalars.
A singleton relation is used instead of scalars.

let matt = one Person

An interpretation using quantifications
(a constraint that makes the set a singleton):

all x : S | ... x ...

x = {t} for an element t of S

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 26 / 60

Alloy Basic elements of language

Facts

Additional restrictions on signatures and fields can be expressed in
Alloy as facts.

AA (Alloy Analyzer) looks for instances of the model that also satisfy
all of them restrictions determined by the facts.

Example: ”No person can be her/his own predecessor.”

fact selfAncestor {
no p: Person | p in p.^parents

}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 27 / 60

Alloy Basic elements of language

Functions and Predicates

They can be used as ”macros”.
They might be named and used multiple times in different contexts.
(facts, statements, execution constraints).
They might be parametrized and used for specification shortening.

Functions:
A named expression with no or more arguments.
It returns an expression as a returned value.
Functions are called during an analysis if they are referred by their
name.
An example: ”Parent relation.”

fun parents []: Person -> Person { ~children }
An example: ”Sisters.”

fun sisters [p: Person]:

{ {w: Woman | w in p.siblings } }
An example: ”No person can be her/his own ancestor or sister.”

all p: Person |

not (p in p.^parents or p in sisters[p])

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 28 / 60

Alloy Basic elements of language

Predicates

Predicates are useful in the following situations:

Constraints that we do not want records as facts.

constraints that can be used multiple times.

They are called during an analysis only if they are referred by their
name.

An example: ”Two people are blood related if they share an
ancestor.”

pred BloodRelated [p: Person, q: Person] {
some p.*parents & q.*parents

}
Př́ıklad: ”A person cannot be married to a blood relative.”

no p: Married | BloodRelated [p, p.spouse]

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 29 / 60

Alloy Alloy Tool

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 30 / 60

Alloy Alloy Tool

Command Run

The run command

Causes AA to parse the model by executing it.

Instructs the tool to search for model instances.

AA executes only a selected run command in the file.

AA searches only in a limited instance space specified by scope.

Scope represents the maximum number of tuples in each vertex
signature.

Default value of range = 3

Examples

run {} /* the scope is 3 */

run {} for 5 /* the scope is 5 */

run {some Man && no Married} /* with conditions */

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 31 / 60

Alloy Alloy Tool

Statements

We often believe that our model satisfies a certain limitation, a
property that is not directly expressed.

We can define such additional constraints as statements and use AA
to validate them.

If the constraint expressed by the statement is not met,
AA produces an instance of the counterexample.

Examples

”No person has a parent who is also a cousin.”

assert a1 {all p: Person |

no p.parents & p.siblings }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 32 / 60

Alloy Alloy Tool

I Am My Own Grandpa - Alloy Solution

module grandpa

abstract sig Person {
father: lone Man,

mother: lone Woman }
sig Man extends Person { wife: lone Woman }
sig Woman extends Person { husband: lone Man }
fact Biology { no p: Person | p in p.^(mother+father) }
fact Terminology { wife = ~husband }
fact SocialConvention {

no wife & *(mother+father).mother

no husband & *(mother+father).father }
fun grandpas [p: Person]: set Person {

let parent = mother + father + father.wife + mother.husband |

p.parent.parent & Man }
pred ownGrandpa [m: Man] { m in grandpas[m] }
run ownGrandpa for 4 Person expect 1

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 33 / 60

Study Examples Ceilings and Floors

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 34 / 60

Study Examples Ceilings and Floors

Ceilings and floors problem - Specifications

Paul Simons’s song, 1973

“One Man’s Ceiling Is Another Man’s Floor”

module CeilingsAndFloors

sig Platform {}
sig Man {ceiling, floor: Platform}
fact PaulSimon {all m: Man | some n: Man | n.Above[m]}
pred Above[m, n: Man] {m.floor = n.ceiling}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 35 / 60

Study Examples Ceilings and Floors

Ceilings and Floors - a counterexample solution

open CeilingsAndFloors

assert BelowToo { all m: Man | some n: Man | m.Above[n] }
check BelowToo for 2 expect 1

���� �����	
����

���
�����

������������

����
������	
�����

�����	
����

������� ���
�����

�����

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 36 / 60

Study Examples Ceilings and Floors

Ceilings and Floors - a counterexample solution

open CeilingsAndFloors

assert BelowToo { all m: Man | some n: Man | m.Above[n] }
check BelowToo for 2 expect 1

���� �����	
����

���
�����

������������

����
������	
�����

�����	
����

������� ���
�����

�����

John Mc Naughton’s Twisted
House

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 36 / 60

Study Examples Ceilings and Floors

Ceilings and Floors - a Counterexample Solution with
Geometry

open CeilingsAndFloors

pred Geometry {no m: Man | m.floor = m.ceiling}
assert BelowToo’ { Geometry =>

(all m: Man | some n: Man | m.Above[n]) }
check BelowToo’ for 2 expect 0

Executing "Check BelowToo’ for 2 expect 0"

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20

211 vars. 18 primary vars. 335 clauses. 15ms.

No counterexample found. Assertion may be valid, as expected. 16ms.

check BelowToo’ for 3 expect 1

����

����

����	
�		�
�

�����	���

�������

�����	���

��		�

��		��������

����

�����	
�		�
��

����	
�		�
�

������� �����	���

��		�

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 37 / 60

Study Examples Ceilings and Floors

Ceilings and Floors - a Solution with NoSharing

open CeilingsAndFloors

pred NoSharing {
no m,n: Man | m!=n

&& (m.floor = n.floor || m.ceiling = n.ceiling) }

assert BelowToo’’ { NoSharing

=> (all m: Man | some n: Man | m.Above[n]) }
check BelowToo’’ for 6 expect 0

check BelowToo’’ for 10 expect 0

Executing "Check BelowToo’’ for 10 expect 0"

Solver=sat4j Bitwidth=0 MaxSeq=0 SkolemDepth=1 Symmetry=20

6750 vars. 330 primary vars. 14472 clauses. 296ms.

No counterexample found. Assertion may be valid, as expected. 889ms.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 38 / 60

Study Examples Selected Structures

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 39 / 60

Study Examples Selected Structures

Blue Planet Puzzles

Blue planet creatures:

insane geniuses (blue creatures), who sometimes tell the truth and
sometimes lie,
normals (yellow), who always lie, and
sane geniuses (green), who always tell the truth.

The Master of Universe poses puzzles so that in each of the puzzles
there is always only one insane genius, one sane genius and one
normal.

Problem 1
A: I am blue.
B: I am green if A is a normal.
C: I am yellow and A’s statement is true.
Who is what?

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 40 / 60

Study Examples Selected Structures

Bijective Relation I

module SaneInsaneNormalOnBluePlanet

open util/boolean // Bool, True, False

abstract sig Color {}
one sig Blue, Green, Yellow extends Color {}

abstract sig Speaker {}
one sig Sane, Insane, Normal extends Speaker {}

abstract sig Creature { // the relation table

speaker: Speaker,

color: Color,

speech: Bool,

}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 41 / 60

Study Examples Selected Structures

Bijective Relation II - (1:1) constrains

pred IsSane [a:Creature]

{a.speaker = Sane and a.speech = True}
pred IsNormal [a:Creature]

{a.speaker = Normal and a.speech = False}
pred IsInsane [a:Creature]

{a.speaker = Insane}
pred TrueSentence [a: Creature]

{IsSane[a] or IsNormal[a] or IsInsane[a]}

fact BluePlanet {
all c: Creature | TrueSentence[c]

Blue.~color.speaker = Insane // (1:1) correspondences

Yellow.~color.speaker = Normal

Green.~color.speaker = Sane

}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 42 / 60

Study Examples Selected Structures

Bijective Relation III - Specifications

fact MasterPuzzles { // (1:1) mappings

all s: Speaker | one s.~speaker

all c: Color | one c.~color

}
one sig A, B, C extends Creature {}

pred Problem1 [] {
A.speech=True <=> A.color = Blue

B.speech=True <=> (A.speaker = Normal => B.color = Green)

C.speech=True <=> (A.speech = True and C.color = Yellow)

}
run {Problem1}

A solution: A is a normal, B a sane genius and C an insane genius.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 43 / 60

Study Examples Selected Structures

Ordering - a sequence of houses

open util/ordering[House] as hsOrd

abstract sig House {}
one sig H1, H2, H3, H4 extends House {}{

hsOrd/next[H1] = H2

hsOrd/next[H2] = H3

hsOrd/next[H3] = H4 }
abstract sig Nationality {
lives: one House,

drinks: one Drink,

owns: one Animal,

smokes: one Cigarette, }
fact {

H3.~lives.drinks = Milk //9

Chesterfields.~smokes.lives in

(hsOrd/prev[Fox.~owns.lives]

+ hsOrd/next[Fox.~owns.lives]) //11 }
Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 44 / 60

Study Examples Dynamic Systems

Outline

1 Alloy
Motivation
Basic elements of language
Alloy Tool

2 Study Examples
Ceilings and Floors
Selected Structures
Dynamic Systems

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 45 / 60

Study Examples Dynamic Systems

Dynamic Models

system modeling with states and transitions

modeling operations that cause transitions

Alloy

does not know the concept of state transition,

Sets defined in signatures are fixed.

Dynamic aspects can be modeled by time-dependent relations.

There are several ways to model system dynamics

signature specification Time expressing time
add a time component to each session that changes over time.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 46 / 60

Study Examples Dynamic Systems

Dynamic Models

system modeling with states and transitions

modeling operations that cause transitions

Alloy

does not know the concept of state transition,

Sets defined in signatures are fixed.

Dynamic aspects can be modeled by time-dependent relations.

There are several ways to model system dynamics

signature specification Time expressing time
add a time component to each session that changes over time.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 46 / 60

Study Examples Dynamic Systems

Static Family Model

abstract sig Person {
children: set Person,

siblings: set Person,

}

sig Man, Woman extends Person { }

sig Married in Person {
spouse: one Married,

}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 47 / 60

Study Examples Dynamic Systems

Dynamic Family Model

sig Time {}

abstract sig Person {
children: Person set -> Time,

siblings: Person set -> Time,

}

sig Man, Woman extends Person { }

sig Married in Person {
spouse: Married one -> Time,

}

Signatures are time independent

Married is not modeled correctly

t : Married = {} vs. t′ : Married = {(Peter), (Sue)}
Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 48 / 60

Study Examples Dynamic Systems

Transition Specification in Alloy I

A transition can be modeled as a predicate between two states:

state just before transition a
state just after transition.

Defined as a predicate with (at least) two formal parameters:
t, t ’: Time

Constraints that define the state at both times.

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 49 / 60

Study Examples Dynamic Systems

Transition Specification in Alloy II

Input Conditions
What applies in the states before the transition.

Output conditions
A description of the effects of the transition that generate the following
state

Invariant
A description of what does not change

It is recommended to comment well on individual categories of
conditions and invariant

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 50 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - Basic Signatures

module hotel

open util/ordering [Time] as TO

open util/ordering [Key] as KO

sig Key {}
sig Time {}
sig Room {
keys: set Key,

currentKey: Key one -> Time }
sig Guest { gkeys: Key -> Time }
one sig FrontDesk {
lastKey: (Room -> lone Key) -> Time,

occupant: Room -> Guest -> Time }
fun nextKey [k: Key, ks: set Key]: set Key {

KO/min [KO/nexts[k] & ks] }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 51 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol -Invariants

fact {
all k: Key | lone keys.k

all r:Room, t:Time| r.currentKey.t in r.keys }

pred noFrontDeskChange [t,t’: Time] {
FrontDesk.lastKey.t = FrontDesk.lastKey.t’

FrontDesk.occupant.t = FrontDesk.occupant.t’ }

pred noRoomChangeExcept [rs: set Room, t,t’: Time] {
all r: Room - rs | r.currentKey.t = r.currentKey.t’ }

pred noGuestChangeExcept [gs: set Guest, t,t’: Time] {
all g: Guest - gs | g.gkeys.t = g.gkeys.t’ }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 52 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - Registration

pred checkin [g: Guest, r: Room, k: Key, t,t’: Time] {
// the guest holds the input key

g.gkeys.t’ = g.gkeys.t + k

let occ = FrontDesk.occupant | {
// the room has no current occupant

no r.occ.t

// the guest becomes the new occupant of the room

occ.t’ = occ.t + r->g }
let lk = FrontDesk.lastKey | {
// the input key becomes the room’s current key

lk.t’ = lk.t ++ r->k

// the input key is the successor of the last key in

// the sequence associated to the room

k = nextKey [r.lk.t, r.keys] }
noRoomChangeExcept [none, t, t’]

noGuestChangeExcept [g, t, t’] }
Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 53 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - Room Entry

pred entry [g: Guest, r: Room, k: Key, t, t’: Time] {
// the key used to open the lock is one of

// the key the guest holding

k in g.gkeys.t

// pre and post conditions

let ck = r.currentKey |

// not a new guest

(k = ck.t and ck.t’ = ck.t)

// new guest

or (k = nextKey [ck.t, r.keys] and ck.t’ = k)

// frame conditions

noRoomChangeExcept [r, t, t’]

noGuestChangeExcept [none, t, t’]

noFrontDeskChange [t, t’] }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 54 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - Checkout

pred checkout [g: Guest, t,t’: Time] {
let occ = FrontDesk.occupant | {
// the guest occupies one or more rooms

some occ.t.g

// the guest’s room become available

occ.t’ = occ.t - (Room -> g)

}
// frame condition

FrontDesk.lastKey.t = FrontDesk.lastKey.t’

noRoomChangeExcept [none, t, t’]

noGuestChangeExcept [none, t, t’]

}

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 55 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - Dynamics (in Time)

pred init [t: Time] {
// no guests have keys

no Guest.gkeys.t

// the roster at the front desk shows no room as occupied

no FrontDesk.occupant.t

// the record of each room’s key at the

// front desk is synchronized with the

// current combination of the lock itself

all r: Room | r.(FrontDesk.lastKey.t) = r.currentKey.t }
fact Traces {
init [TO/first]

all t: Time - TO/last |

let t’ = TO/next [t] | some g: Guest, r: Room, k: Key |

entry [g, r, k, t, t’]

or checkin [g, r, k, t, t’] or checkout [g, t, t’] }

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 56 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - Verification

assert noBadEntry {
all t: Time, r: Room, g: Guest, k: Key |

let t’ = TO/next [t], o = r.(FrontDesk.occupant).t |

(entry [g, r, k, t, t’] and some o)

implies g in o

}

check noBadEntry for 3 but 2 Room, 2 Guest, 5 Time

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 57 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - a Counterexample

�����

�����

����	�

��
�����	������

��
�����	����

����

��
�����	������

��
�����	����

�

�

��
�����	������

��
�����	���� ������	���������������

����

��
�����	����

��
�����	����������	����������

����

��
�����	���	�

����	�

��
�����	����

��
�����	����

��
�����	����������	����������

����!

��
�����	����

��
�����	����������	����������

��������������
�����	����

������������

��������������
�����	����

������������

������������

������������

������	������������������

����

����

"�
�	#���

$��	������

�%������

$��	������

�%������
���&��	���

�%�����	��

$��	������

�%������

$��	������

�%������
���&��	���

�%�����	��

$��	������

�%������
���&��	���

�%�����	��

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 58 / 60

Study Examples Dynamic Systems

Hotel Keys Protocol - a Correction

fact noIntervening {
all t: Time - TO/last |

let t’ = TO/next [t], t’’ = TO/next [t’] |

all g: Guest, r: Room, k: Key |

checkin [g, r, k, t, t’]

implies (entry [g, r, k, t’, t’’] or no t’’)

}

check noBadEntry for 3 but 2 Room, 2 Guest, 10 Time

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 59 / 60

Study Examples Dynamic Systems

References I

Radek Mǎŕık (radek.marik@fel.cvut.cz) Alloy Specifications using Relational Logic October 17, 2023 60 / 60

	Alloy
	Motivation
	Basic elements of language
	Alloy Tool

	Study Examples
	Ceilings and Floors
	Selected Structures
	Dynamic Systems

