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? Real-time processing of continuous streams of data in motion

?  Generally, we can think of three major components:

— Message processors
« Deliver data for processing
— Stream processors
* Processing layer — runs some computations/application logic on the data

— Storage/Output
« Store results, prepare stream for other consumers, send notifications, etc.
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Batch processing vs Stream Processing

Criteria

Nature of Data

Latency

Processing Time

Infrastructure Needs

Throughput

Complexity

Ideal Use Cases

Error Handling

Consistency &
Completeness

Tools & Technologies

Batch Processing
Processed in chunks or batches.

High latency: insights are obtained after
the entire batch is processed.

Scheduled (e.g., daily, weekly).

Significant resources might be required
but can be provisioned less frequently.

High: can handle vast amounts of data at

once.

Relatively simpler as it deals with finite
data chunks.

Data backups, ETL jobs, monthly reports.

Detected after processing the batch;
might need to re-process data.

Data is typically complete and consistent
when processed.

Hadoop, Apache Hive, batch-oriented
Apache Spark.

Stream Processing
Processed continuously, one event at a time.

Low latency: insights are available almost
immediately or in near-real-time.

Continuous.

Requires systems to be always on and
resilient.

Varies: optimized for real-time but might
handle less data volume at a given time.

More complex due to continuous data flow
and potential order or consistency issues.

Real-time analytics, fraud detection, live
dashboards.

Needs immediate error-handling mechanisms;

might also involve later corrections.

Potential for out-of-order data or missing
data points.

Apache Kafka, Apache Flink, Apache Storm.

{ PROFINIT 7




Streaming in Spark { PROFINIT 7

7

Spark streaming

https://spark.apache.org/docs/latest/streaming-programming-guide.html#overview

Legacy project, no longer updated
DStreams — low level RDD streaming API

Spark Structured Streaming

https://spark.apache.org/docs/latest/structured-streaming-programming-

quide.html#overview

Streaming API built on the Spark SQL engine, optimizations of execution plans available
Unified API for batch/streaming — code can be reused

You can use DataSet/DataFrame API in Java, Scala, Python and R

Internally, queries are processed in micro-batches

Since Spark 2.3 — introduced continous processing



https://spark.apache.org/docs/latest/streaming-programming-guide.html#overview
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#overview
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#overview

Basic concept and terminology
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? Treat a live data stream as a table that is being continuously
appended

Data stream Unbounded Table

new datain the
data stream

> —_—

new rows appended
to a unbounded table

Data stream as an unbounded table
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? Create stream and add logic

# Create DataFrame representing the stream of Tnput Tines from connection to localhost:9999
Tines = spark \

.readstream \

.format("socket™) \

.option("host", "localhost™) \

.option("port™, 99993 \

.load()

# Split the Iines into words
words = lines.select(
explode
split(lines.value, " ")
J.alias (M"word™)

# Generate running word count
wordCounts = words.groupBy("word").count()
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7 Start receiving data

# Start rumning the query that prints the running counts to the console
query = wordCounts
.writeStream \
.outputMode ("complete™) \
.format("console™) \
.start()

query.awaitTermination()
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?  Append

— Only the new rows appended in the Result Table since the last trigger will be
written to the external storage. This is applicable only on the queries where
existing rows in the Result Table are not expected to change.

7 Complete

— The entire updated Result Table will be written to the external storage. It is
up to the storage connector to decide how to handle writing of the entire
table.

?  Update

— Only the rows that were updated in the Result Table since the last trigger will
be written to the external storage (available since Spark 2.1.1).
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? Structured streaming does not materialize an entire table

— Process latest data incrementally, update the result and discard
— Keeps only minimal intermediate state that is required to update the result

7> Faul-tolerant

— Checkpoints

« Metadata/data checkpoints saved to durable/fault-tolerant storage (S3,
HDFS,..)

— Write-ahead logs
« Capture ingested data, but not yet processed by query
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? Handling recovery after system failure in streaming systems:

— Fault-tolerance semantics:

« At least once: Each message is guaranteed to be processed, but it may get
processed more than once

« At most once: Each message may or may not be processed. If a message is
processed, it's only processed once

« Exactly once: Each message is guaranteed to be processed once and only
once




How to achieve exactly-once delivery (simplified)? { PROFINIT 7

?  Streaming source

— In case of failure, data should be replayable in the source system

7 Checkpointing and write ahead logs

— Store current state to durable, fault-tolerant storage to recover in case of
driver/executor failures

7 ldempotent processing and sinks

— Ensure that data is not duplicated when reprocessed/retried after failure
— Ensure correct final state of the system after data is reprocessed




Sources and Sinks for Structured
Streaming
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7 File source

— Reads file written in a directory as a stream of data
— CSV, JSON, ORC, Parquet, S3,...

userSchema = StructType().add("name™, "string").add("age”, "integer™)
csvDF = spark %,

.readStream

option("sep”, ";") M\

.schema(userSchema) %

Losv(" fpath/to/directory™) # Eguivalent to format(“csv™). Toad("/path/to/directory"™)
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? Messaging services
— Kafka, Kinesis, Event Hubs,...

df = (spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "<server:ip>")
.option("subscribe", "<topic>")
.option("startingOffsets", "latest")
.load()

val kinesis = spark.readStream
.format("kinesis")
.option("streamName", kinesisStreamName)
.option("region", kinesisRegion)
.option("initialPosition", "TRIM_HORIZON")
.option("awsAccessKey", awsAccessKeyId)
.option("awsSecretKey", awsSecretKey)
.Lload()
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7 Delta table

— Incremental read of delta tables

— You can use change data feed (CDF) of Delta Lake table to upsert changes
in downstream tables

— Configure input rate
 maxFilesPerTrigger: How many new files to be considered in every micro-
batch (default 1000).
 maxBytesPerTrigger: How much data gets processed in each micro-batch.
This is not set by default.
spark.readStream.format("delta") spark.readStream. format("delta")

.option("startingVersion", "5") .option("readChangeFeed", "true") \
.load("/tmp/delta/user_events") .table("myDeltaTable")
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? Ingesting supported files from cloud object storage

— Classic file source or Databricks Auto Loader (cloudFiles format)

— Auto Loader scales to support (near) real-time ingestion of millions of files
per hour

— S3, Azure Blob Storage, Google Cloud Storage,...

(spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.schemalocation", checkpoint_path)
.load(file path)

— cloudFiles.schemalocation option: supports schema inference and evolution
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? Benefits of Auto Loader over ,classic” file source:
— Efficient and more performant file discovery
— Schema inference and evolution
— Cheap file discovery

? File detection modes
— Directory listing
* Used by default
* Reduced number of API calls by listing files in subdirectories
— File notification service

» Leverages file notifications and queue service in cloud infrastructure account
« Better for large input directories / high volume of files, more difficult to set up
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7 File sink

resultDf
.writeStream
.outputMode("append”) // Filesink only support Append mode.
-format{"csv") // supports these formats : csv, json, orc, parguet
.option{“path”, "output/filesink output™)
.option{“header”, true)
.option{"checkpointlocation"”, "checkpoint/filesink_checkpoint™)

.start()

.awaitTermination()
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7 Kafka sink

(spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "<server:ip>")
.option("subscribe", "<topic>")
.option("startingOffsets”, "latest")
.load()
.join(spark.read.table("<table-name>"), on="<id>", how="left")
.writeStream
.format("kafka")
.option("kafka.bootstrap.servers", "<server:ip>")
.option("topic", "<topic:")
.option("checkpointlocation", "<checkpoint-path>")
.start()
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7> Delta Lake table sink

— Good practice to ingest streaming data from external sources to Delta Lake
* Secured ,exactly-once” processing, enabled by transaction log

(spark.readStream
.table("<table-namel>")
.join(spark.read.table("<table-name2>"), on="<id>", how="left")
.writeStream
.trigger(availableNow=True)
.option("checkpointlocation", "<checkpoint-path>")
.toTable("<table-name3>")
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7 forEachBatch

— Data are processed with custom logic per micro-batch -> can use (theoretically) arbitrary sink
— Provides only at-least-once guarantees

* You can use batchld to deduplicate data and secure exactly-once, but requires additional effort
— Does not work with continuous-processing mode

def writeToSQLWarehouse(df, epochld):
df .write \

.format("com.databricks.spark.sqldw") \
.mode('overwrite') \
.option("url", "jdbc:sqlserver://<the-rest-of-the-connection-string>") \
.option("forward_spark_azure_storage_credentials", "true") \
.option("dbtable", "my_table_in_dw_copy™") \
.option("tempdir", "wasbs://<your-container-name>@<your-storage-account-name>.blob.core.windows.net/<your-directory

.save()
spark.conf.set("spark.sqgl.shuffle.partitions”, "1")

query = (
spark.readStream.format("rate").load()

.selectExpr("value ¥ 10 as key")
.groupBy ("key")
.count()
.toDF("key", "count")
.writeStream
.foreachBatch(writeToSQLWarehouse)
.outputMode("update")
.start()
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7 Most operations work just the same as in the case of ,classic”
dataframe

— Select, where, groupBy,...
— Temporary tables + SQL
7 Joins

— Stream dataframe — Static dataframe
— Stream dataframe — Stream dataframe
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?  We generally distinguish between two types of operations:

— Stateless
« E.g. Filter - needs only information available in current micro-batch
— Stateful

« Such as count of keys over 5 minute period (aggregation), drop duplicates, etc.
- need to preserve state and get information about previous data/results
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7 Without restriction, state can become unbounded - will quickly
introduce latency or even errors

7 We should setup some threshold for how long to continue
processing updates for a given state — watermark
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?  Append with watermark

— Rows are written to the target table once the watermark threshold has
passed. Old state is dropped once the threshold has passed.

?  Update with watermark

— Rows are written to the target table as results are calculated, and can be
updated and overwritten as new data arrives. Old state is dropped once the
threshold has passed.

7 Complete

— Aggregation state is not dropped. The target table is rewritten with each
trigger.
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7 Window operations over event-time

b4 windowedCounts = words

.groupBy (
window (words.timestamp, "10 minutes", "5 minutes"),

words.word

)

.count ()

7 10 minute window, slide every 5 minutes
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12:05-12:15 | dog
12:10-12:20 | dog
12:10-12:20 | owl

counts incremented for windows
12:00-12:10 and 12:05-12:15

| S 12:02 = catdog e et 12:11 . dog
nput Stream 12:03 | dogdog : oned 12:13 | owl
. 12:00 12:05 12:10 12:15
Time —
12:00-12:10 | cat | 1 12:00-12:10 | cat | 2 12:00-12:10 | cat | 2
12:00-12:10 | dog | 3 12:00-12:10 | dog | 3 12:00-12:10 | dog | 3
Result Tables 12:00-12:10 | owl | 1 12:00-12:10 | owl | 1
aﬁer 5 minute triggers 12:05-12:15 | cat | 1 12:05-12:15 | cat | 1
12:05-12:15 | owl | 1 12:05-12:15 |owl | 2
1
1
1

counts incremented for windows

Windowed Grou ped Aggregation 12:05-12:15and 12:10-12:20

with 10 min windows, sliding every 5 mins
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late data that was generated
at 12:04 but arrived at 12:11

Inbut Stream 12:02 | catdog s leat 12:04 dog
. owl ca
p 12:03 | dogdog 1213 | owl
: 12:00 12:15
Time — *r— T T
I I |
Y Y Y
12:00-12:10 | cat | 1 12:00-12:10 | cat | 2 12:00-12:10 | cat | 2
12:00-12:10 | dog | 3 12:00-12:10 (dog | 3 12:00 - 12:10 (dog | 4
Result Tables 12:00-12:10 | owl | 1 12:00-12:10 |owl | 1
after 5 minute triggers 12:05-12:15 | cat | 1 12:05-12:15 | cat | 1
12:05-12:15 | owl | 1 12:05-12:15 | owl | 2
12:10-12:20 |owl | 1

counts incremented only for
o window 12:00 - 12:10
Late data handlingin

Windowed Grouped Aggregation
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7

Introduce watermark to handle late data
— Old data arriving after watermark threshold has passed is not taken into

account

Conditions to use watermark:

Update or append mode
Aggregation should use event_time based column or window function over event_time column
Watermark should be specified over same column as given aggregation

withWatermark clause must precede given aggregation

windowedCounts = words

.withWatermark ("timestamp", "10 minutes")

.groupBy (
window (words.timestamp, "10 minutes", "5 minutes"),
words.word

)

.count ()
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A
1220 . Data as (event time, word) ..':lz:u. ol
() Data late but within watermark K .
(O Data too late outside watermark .." 12:17, owl
o} g
12:15 i i i
g \I‘;Ava:eventktlme seen till now P —— R W P
— _ Watermark = 12414, dog () . .
= max event time -- late threshold K 12:13, 0wl intermediate state
] ) s e for12:00-12:10
|_|>J 12:10 ._; @ wm =12:21-10m = 12:11 <_—dropped as
..... h 12:09, cat @ watermark = 12:10
12:08, owl 12:08, dog
12:07,dog
12:05 watermark updated |
every trigger using tatlze m=12:14-10m=12:04 |  12:04,donkey datatoo late,
threshold = 10 min ignored in counts
. >
12:00 12:05 12:10 12:15 12:20 12:25
Processing Time — : l ey table not
. . . :00- 12:10 jow 2:00- 12:10 Jow 12:00- 12:10 Jowl|1 :00-12:10 |ow .
with 5 min triggers " 12:00- 1210 jowij1 » — P11 updated with
12:00- 12:10 |dog) 1 12:00- 12:10 [dogf L 12:00- 12:10 |dog|2 12001100 2L+ o late data
12:05-12:15 jowl|1 12:00- 12:10 |cat|1 12:00- 12:10 |cat|1 12:00- 12:10 |cat|1 (12:04’ donkey)
12:05- 12:15 |dog) 1 12:05- 12:15 owl| 1 12:05- 12:15 jowl|2 12:05- 12:15 [owl|2
: 12:05- 12:15 |dog|2 12:05- 12:15 |dog(3 12:05- 12:15 [dog|3
Result Tables after each trigger 8 L -
12:05-12:15 |cat| 1 12:05-12:15 |cat|2 12:05- 12:15 |cat|2
12:10- 12:20 |dog| 1 12:10- 12:20 |dog| 1 12:10-12:20 [dogl 1} table updated
12:10- 12:20 |cat |1 12:10-12:20 |cat|1 i
purple rows are updated rows that : V\{Izthl;ate dlata
: . 12:10- 12:2 1 12:10- 12:20 jowl|2 :
are written to the sink as output 0-12:20 jowl ow2] ( » owl)

Watermarking in Windowed
Grouped Aggregation with Update Mode
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12:25 ’."IZ:Zb,Gv-.-‘\
. (anae’
1290 : Data as (event time, word) 1221 0wl
(0 Data late but within watermark - .
O Data too late outside watermark _." 12:17, owl
g 1215 “s== Maxeventtimeseentillnow | 1505 ot Wi =122 m =L2do
= _ Watermark = 12,14, dog ’ P
€ max event time - late threshold s 12:13, owl
L 1210 wrm = 12:21-10m =12:11
W @ : 1209, cat ® 1255 cat
12:08, owl 12:08, dog
12:07,dog
12:05 o)
wm=12:14- 10m =12:04 12:04, donkey S=———__ data too late,
ignored in counts

12:00 12:05 12:10 12:15 12:20 12:25 12:30
Processing Time
with 5 min triggers partial counts for window 12:00 - 12:10 maintained as internal 12:00- 12:10 jowl] 1 1 1
state while waiting for late data, so not yet added to result table 12:00- 12:10 |cat|1 1 at| 1
12:00- 12:10 |dog|2 12:00- 12:10 |dog

2
12:05- 12:15 jowl| 2
12:05- 12:15 |cat |2
12:05- 12:15 |dog|3

final counts for 12:00 - 12:10 added to table
when watermark > 12:10, late data counted,
and intermediate state forwindow dropped

Watermarking in Windowed Result Tables after
Grouped Aggregation with Append Mode each trigger
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7 Allow flexibility over time interval triggers — if you don‘t need real
time processing, there is no need to have it — control cost

? E.g. Update database every hour,...

7 .trigger(processingTime="10 seconds’)
—  Default 500ms
—  Micro-batch mode
? .trigger(once=True)
—  Process all available data in single batch and exit, now deprecated
? .trigger(availableNow=True)
—  Process all available data in multiple micro-batches and exit
—  Better scalability then ,once”
7 .trigger(continuous= "1 second')

—  Low-latency, continuous mode
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7 Micro batch processing

p
Spark driver } driver launches short
B — tasks in every micro-batch
~I to process events
0g
L)

to-be-processed offsets

savedto a write-ahead-log ! L : L 1
before starting micro-batch . hort ta v Ul chort tasks | 1+ Y rt tacks | §
| — 1 = 1 — I

1 [ 1 1 1 1

Input event . micro-batch 1 ‘micro-batch ' micro-batch
stream ' ' " b

Micro-batch Processing uses periodic tasks to process events
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7 Micro batch processing

micro-batch boundaries
(interval of seconds)

— /

time when eventsare . @ ®—
available at source

time when processed ) 1YYVY padid

events are written to sink " . |-
_ second-scale

end-to-end
latencies

Second-scale end-to-end latencies with Micro-batch Processing
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7 Continuous processing

) driver launches long-

e g e ateh e tasks process events as soon as
\ J start of the que
a4 they are available at source
SKS continuo y ( e
RR(RYRIRIRIRRIR{NIn
input event : LY AT
stream s epogh::: @ :iigpogh:::: @ i epoch::ii @
processed offsets saved | 3
to a write-ahead-log after ‘ log | ==
everyepoch @& ™

Continuous Processing uses long-running tasks to continuously process events
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7 Continuous processing

time when events are > \ ©
available at source :

long running Spark tasks
continuously processing events

time when processed ' ¥ . | |
events are written to ‘ ¢ : &r)ms ccale g » —@
sink oot 1117
* end-to-end

epoch markers for

latencies checkpointing progress

Millisecond-scale end-to-end latencies with Continuous Processing
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7 Apache Flink

— Real-time streaming
— Also supports batch processing

7 Apache Storm

— Real-time streaming

7  Kafka Streams
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1500 msg/s: time_enrich

220

200

Latency {ms)

160

140 4

T T T T T T T
01 13:32 01 13:37 01 13:42 01 13:47 01 13:52 01 13:57 01 14:02
Event time
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10000 msg/s: time_total

300000 4

250000 4

200000 4

150000

Latency (ms)

100000

50000 4

T T T T T T T
01 15:59 01 16:04 01 16:09 01 16:14 01 16:19 01 16:24 01 16:29
Event time
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