
(Big) Data in Time

Alisa Benešová (Petr Filas) 16. 10. 2024

2

Agenda

1. Motivation

2. A Little Bit of History

3. A Little Bit of Theory

4. Conclusion

3

4

Motivation

Brief history and brief introduction to big data concepts will show

– Money are important

– Every technology has its rise, peak and decline

– Key concept remains

– Take the best and fix issues

– Let’s go through data dinosaur land.

RDBMS

BigData AI hype

A Little Bit of History

6

 1950s–1960s: Early developments in database management systems (DBMS) like hierarchical

databases and IBM’s Information Management System (IMS). File systems etc.

 1970: Edgar F. Codd invented the relational database model, laying the foundation for modern

databases. He was working in IBM. Codd’s rules applied. SQL development.

 1980s: Parallel database systems emerge, offering methods for scaling and distributing data

workloads across multiple machines.

 1989: The term “Big Data” was first used in relation to the challenge of managing and processing

massive datasets, especially in scientific computing.

1950s–1980s: Foundations of Data Processing

https://dzone.com/articles/rdbms-importance-of-codds-12-rules

7

 1990s: The explosion of the web leads to a growing need for handling unstructured data at a larger

scale. NoSQL databases appeared.

 1994: Companies like Yahoo! and Altavista create search engines, bringing forth the need to

process massive amounts of data.

 Altavista 1998 ~13 millions queries/day, 2000 ~80millions queries each day

 1997: Michael Cox and David Ellsworth publish a paper Application-controlled demand paging for

out-of-core visualization (NASA, Intel, Nvidia Research), using the term "Big Data" to describe the

challenges of visualizing large datasets.

1990s: WWW and Search Engines - this is where it really started

https://ntrs.nasa.gov/api/citations/20020046803/downloads/20020046803.pdf

8

 2003: Google introduces the Google File System (GFS), a distributed file system designed to support large-scale

data processing.

 2004: Google’s paper on MapReduce: Simplified Data Processing on Large Clusters is published. This paradigm

revolutionized how distributed data is processed by simplifying parallel computing.

 2004: Google introduces Bigtable paper, a distributed storage system for managing structured data. Google is

still using it.

Not Open Source

2000s: Pre-Hadoop Google Big data Era

MapReduce paper

https://research.google.com/archive/gfs-sosp2003.pdf
https://research.google.com/archive/mapreduce-osdi04.pdf
https://research.google.com/archive/bigtable-osdi06.pdf

9

2006: Apache Hadoop release as OS project.

– First Hadoop = HDFS + MapReduce

2007: Yahoo! adopts Hadoop for its web search engine, and Hadoop starts gaining significant

momentum in industry.

2006: Open-Source Hadoop Era

Bright future ahead predicted…

10

2010: Apache Hive emerge, providing higher-level abstractions for querying large datasets in

Hadoop “something like database”

New SQL databases (noSQL with ACID) , cloud databases.

2011: Commercial fight: Cloudera, Hortonworks, and MapR - making it accessible for enterprises.

2012: Apache releases Hadoop 2.0 with YARN (Yet Another Resource Negotiator), enabling Hadoop

to support non-MapReduce applications and ushering in a more flexible resource management

framework.

2012: Spark, originally developed by UC Berkeley's AMPLab, is released as a faster, in-

memory alternative to MapReduce for distributed data processing.

2010s: BigData = Hadoop for a while…

11

Late 2010s–now: Peak and decline of Hadoop, Bigdata still on

2018: Hadoop's dominance starts to decline in favor of cloud-native platforms and frameworks such as

Apache Kafka, Apache Flink, and more containerized, microservice-based architectures.

Google trends. Do you remember where it all started?

The rise of Hadoop

The rise of BigData

The rise of Spark The rise of Databricks (and cloud) = the fall of Hadoop

12

2020: Modern data platforms like Databricks, Snowflake, and Google BigQuery gain traction due to

their scalability, simplicity, and cloud-native architectures.

2023–2024: Boom started with ChatGPT (OpenAI release 2022). The AI, generative AI and machine

(earlier known as Data Science ). Everyone is integrating big data with AI/ML pipelines, moving

towards more real-time analytics and AI-powered decision-making.

2024: Hadoop is still alive but mostly for on-premise solution (e.g. Cloudera) = cloud-based data

platforms won the war (new era is comming)

2020s: Rise of AI, Streaming, and Modern Data Platforms

A Little Bit of Theory

Motivation for Paralell (Data) Processing

Solve real life problems

– Complexicity - Problems that are difficult to solve sequentially can often be

broken down into smaller, parallel tasks

– Efficiency and Speed - By breaking down large tasks into smaller,

concurrent processes, parallel processing significantly reduces the time

required to complete data-intensive tasks.

– Optimization: Parallel processing makes better use of available resources.

By distributing tasks across multiple processors, it maximizes the use of

computational power and minimizes idle time

Examples

– SETI - Search for Extra-Terrestrial Intelligence

– Financial Modeling

– Recommendations (Netflix)

– Big Data in enterprise

Key Principles

Decomposition

– Tasks being spread across multiple nodes to work in parallel

Load Balancing

– Distributing tasks evenly across compute (workers)

Synchronization & Communication

– Coordinating the execution of parallel tasks to ensure they

work together correctly.

Scalability

– Ensuring that the parallel processing system can handle

increasing amounts of data and processing power without

significant performance degradation

Typical Architecture

Key Principles

Decomposition of

– Data – leads to distributed storage (HDFS, ADLS, S3)

– Compute – leads to distributed compute (MapReduce, Spark)

Data and Compute separation (cloud data platforms)

– By decoupling storage and compute, organizations can scale each component

independently.

• Storage is cheap

• Compute is expensive

– A lot of data ≠ $$$, if you don’t process them

– A small amount of data ≠ $, if you process them real-time (e.g. streaming)

Distributed Storage

Distributed File System (DFS)

– HDFS (Hadoop Distributed File System)

– Traditional FS with directories and

subdirectories (hierarchy)

– Data are split to blocks that are distributed

– Support random writes anywhere 

– Tightly coupled with compute 

Object-Based Storage (OBS)

– ADLS (Azure Data Lake Storage)

– AWS S3 (Simple Storage Service)

– Flat address space, where each object contains the

data, a unique identifier, and metadata

– No random writes within objects 

– Loosely coupled with compute 

Distributed Compute

MapReduce = programming paradigm

= implementation of MapReduce paradigm on

Hadoop platform

Map - each node applies the mapping

function to its data portion, filtering and

sorting it according to parameters.

Shuffle - mapped data is redistributed to

other nodes on the system so that each

node contains groups of key-similar data

Reduce - Data is processed in parallel, per

node, per key

Spark

Does the same thing but more efficiently and conveniently

– Processing speed: Apache Spark is much faster than Hadoop MapReduce (100x).

– Data processing paradigm: Hadoop MapReduce is designed for batch processing,

while Apache Spark is more suited for real-time data processing and iterative analytics

(but handles batch as well).

– Ease of use: Apache Spark has a more user-friendly programming interface and

supports multiple languages, while Hadoop MapReduce requires developers to write

code in Java.

– Fault tolerance: Apache Spark's Resilient Distributed Datasets (RDDs) offer better

fault tolerance than Hadoop MapReduce's Hadoop Distributed File System (HDFS).

– Integration: Apache Spark has a more extensive ecosystem and integrates well with

other big data tools, while Hadoop MapReduce is primarily designed to work with

Hadoop Distributed File System (HDFS).

Spark

So, are there any cons?

– It’s all about the RAM

– RAM used to be expensive but the world has changed…

The rise of Spark

The rise

of Hadoop

23

Complex setup, skilled administrators and developers.

MapReduce (Java based) is slow and not sufficient for ML or RT

processing  Spark

HDFS is optimal for big data files and not flexible.

Horizontal scalling lead to huge onprem clusters => hard and

expensive to maintain.

Numerous tools  difficult to make and maintain cohesive data

pipelines.

Weak bult-in governance and security tools => hard to be complient

with regulations.

Developers heavy, not user friendly.

What Caused Hadoop’s Decline (Some of)

24

What of CAP theorem is applicable to Relational Databases?

– CA

What of CAP theorem is applicable to BigData systems?

– CP or AP

– Fault or Consistency tolerant

CAP Theorem

25

Conclusion

27

Conslusion

Brief history and brief introduction to big data concepts will show

– Money are important – GOOGLE, Yahoo, Microsoft, IBM, Linkedin…

• Open Source developers need to eat too 

– Every technology has its rise, peak and decline (Gartner hype cycle)

• Datawarehouse, Hadoop, TV , even gen AI started to decline

– Key concept remains – distributed data, distributed processing, fault

tolerancy etc.

– Take the best and fix issues – modern data platforms offer security,

governance, stream and batch processing, wide integration, great UI,

support etc.

https://en.wikipedia.org/wiki/Gartner_hype_cycle
https://www.gartner.com/en/newsroom/press-releases/2024-08-21-gartner-2024-hype-cycle-for-emerging-technologies-highlights-developer-productivity-total-experience-ai-and-security

28

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6
LINKEDIN

linkedin.com/company/profinit

TWITTER

@profinit_EU

FACEBOOK

facebook.com/Profinit.EU

YOUTUBE

Profinit EU, s.r.o.Tel.: + 420 224 316 016, web: www.profinit.eu

Děkujeme za pozornost

