{ PROFINIT 7

4

sk

Apache Spark - basics

Martin Oharek October 9th, 2024

Outline

Outline { PROFINIT

Spark overview
How Spark works
Spark Dataframes
Spark architecture
Spark configuration

o kW PRE

Spark vs Databricks

Spark overview

The What, Why and When of Apache Spark { PROFINIT 7

7 What:
— Unified engine for big data and machine learning
— Distributed data processing engine -> up to petabytes of data up to thousands of physical or virtual machines
— Open Source with over 1000 contributors from 250+ organizations

— Founded by people who founded Databricks

— High speed data querying, analysis, and transformation with large data sets.
— Great for iterative algorithms (using a sequence of estimations based on the previous estimate).
— Supports multiple languages (Java, Scala, R, Python)
— Free of charge
? When:
— When you're using functional programming (output of functions only depends on their arguments, not global states)
— Performing ETL or SQL batch jobs with large data sets
— Processing streaming

— Machine Learning tasks

Spark - facts

? In-memory Map-Reduce engine
? Written in Scala
? Fault-tolerant

? Connected with all major big data technologies

? Runs ,Everywhere® 3

Google Cloud

dWsS

\ﬁi‘i’z»\‘éﬁ‘;} :

A

Microsoft Azure

{ PROFINIT 7

My ng %* elastic
HostESQL §3 kafka
@ APACHE &)
S oo Sp Q fK ’ & redis
HBASE and more...

ZTE Omongo

cassandra

Apache Spark Evolution { PROFINIT 7

? Spark 1.x — 2014 :
— Spark CORE - Fault-tolerant in memory computation engine
— Spark RDD (Resilient Distributed Dataset) API
— APl for Streaming and Mlib
— Spark SQL
? Spark 2.x - 2016:
— Speedups the computation 5 to 20 times.
— APl for structured Streaming
— APl for graph data processing
— SQL 2003 support
— Datasets AP| over RDD

> Spark 3.x - 2020:
— adaptive query execution, dynamic partition pruning and other optimizations
— Significant improvements in pandas APIs, including Python type hints and additional pandas UDFs
— Upto 40x speedup for calling R user-defined functions
— SQL ANSI supports

When does Spark work best? { PROFINIT 7

» On distributed data systems or NoSQL Databases
) Collaboration — Data engineers, data scientist, Bl analyst, ..

> Batch and streaming tasks

Common uses:

1. Calculation of client scores (risk score, fraud detection)
2. ETL or SQL batch jobs

Using streaming data to trigger a response

Machine Learning tasks

a > W

Graph algorithms

When Spark is not so good / appropriate? { PROFINIT 7

» Small data
) Low computing capacity (memory)
) Poorly parallelizable

> real-time

e.g..
1. Modeling on small data
2. Ingesting data in a publish-subscribe model

3. Median calculation

How to work with Spark? { PROFINIT 7

? Interactively
— Command line (shell for both Python and Scala)
— Databricks notebook
— Zeppelin/Jupyter notebook
— From IDE (Pycharm, IntelliJ, ...)

? Batch / application
— compiled .jar file
— *.pyfile

? Learning path:
— http://spark.apache.org

— https://www.databricks.com/spark/getting-started-with-apache-spark

http://spark.apache.org/
https://www.databricks.com/spark/getting-started-with-apache-spark

How Spark works

Logical point of view { PROFINIT 7

ot

Py,
),
O

Transformation action

) RDD:

— resilient distributed dataset - the abstractions of Spark. It is used to handle distributed collection of data
elements (e.g.: rows in text file, data matrix, set of binary data) across all the nodes in a cluster.

— isimmutable

) Transformation:
— are planned and optimized, but not evaluated
— planned as DAG - Direct acyclic graph

) Action:

— action is a trigger that started the whole process

Technical point of view { PROFINIT 7

7 Driver:
— Control all processes
— Convert user code to transformations and actions -> tasks
— Distribute tasks across executors

? Executor:

— ,worker® —run tasks and return result to a driver

bé Both run as JVM

Example —word count { PROFINIT 7

7 Task: count number of words in document
? Source: text file splitted to lines

7 Approach:

— Load file from disk
— Transformation of lines: line = split to words = split to items (word, 1)

— Group items with the same word and sum up ones

? Result of transformation: RDD with items (word, frequency)

Example —word count { PROFINIT 7

Transformation:
lines = sc.textFile("bible. txt")

words = lines.flatMap (lambda line: line.split(" "))

items = words.map (lambda word: (word, 1))

counts = items.reduceByKey (lambda a, b: a + b)

Action:

counts. take (5)

Spark Dataframes

Spark SQL and DataFrames (DataSets) { PROFINIT 7

? New from spark 2.x = Enhances the classical RDD approach

? Data structure DataFrame = ,RDD with columns®
— similar to database relation table
— with metadata (field names, types)
— works with columns —> SQL syntax can be used

1:Andrea;35:64.3;Praha
> RDD 2:Martin:43:87.1:0Ostrava
3:Simona;18:57.8:Brno

“m

1 Andrea 64.3 Praha
2 Martin 42 87.1 Ostrava
3 Simona 18 57.8 Brno

7> Dataframe

WHY use DataFrames { PROFINIT

7 Advantage over Spark RDD:
— Dataframe API - shorter and easier code
— Columns and Types
— SQL languague can be used
— Simplified work with databases
— Catalyst Optimizer can be applied = is faster

Catalyst Optimizer

é Query Plan Optimized Z
j>5 : :

0]

Rules based
optimization

How to get a DataFrame? { PROFINIT 7

? transformation from existing RDD
— if convertable
— sqglContext.createDataFrame (RDD, schema)
? direct input of file
— schema may be defined (Parquet, ORC) or inferred (CSV)
— sglContext.read. format (format) .load (path)
? Hive query
— sqlContext.sql (sql_query)

How to work with a DataFrame? { PROFINIT

1. registration of temporary table + SQL querying
— DF.registerTempTable (" table")
— sglContext.sql ("select * from table")

2. SPARK API
— DF.operations, select, filter, join, groupBY, sort...

3. Convert to RDD -> RDD operation (map, flatMap, ...) and then convert back -> Dataframe

Example —word count with Dataframes { PROFINIT 7

7 Transformation

7 df final = (

7 df.withColumn ("word", explode (split(col("lines"), ' ')))
? .groupBy ("word")

7 .count ()

y)

7 Action

df final.show()

Example —word count with Spark SQL { PROFINIT 7

7 Transformation
7 df .registerTempTable ("temp df")
> df final = (

? sqglContext.sql ("

7 SELECT word, count(*) FROM

7 (SELECT explode (split (Description, ' ')) AS word FROM temp df)
? GROUP BY word

7 \\)

? Action

df final.show()

Spark Actions

Spark Actions { PROFINIT 7

ROD______ | Dawframe | Description

take take,show Show first n rows

count count Count of rows

collect collect Show rdd/dataframe as list
of rows

saveAsTextFile saveAsTable, write Save file/create table

- ' collect
5F)

| | count()

Transformation

7 Every action starts all steps of transformation from the beginning!

Spark Actions { PROFINIT 7

Duration cca 3 hours

1h 2h 1m 1m 1m
— DF » DF » DF » DF » DF saveAsTable()
- B 0
4 ount
— DF — DF -~ DF ,
Duration next 3 hours
Im
DF
Im

SaVEASTable() Duration next 3

hours

Spark Caching { PROFINIT 7

? Methods:
— persist() (several options)
— cache() (use persist with MEMORY_ONLY option)

— unpersist() (release persisted data)

? Persist options:
— MEMORY_ONLY — Default —> deserialized JVM memory
— MEMORY_AND_DISK —> excessed patrtitions into disk.
— MEMORY_ONLY_SER -> serialized JVM memory
— MEMORY_AND_DISK_SER -> etc.

7 Persistis not an action!

Spark Caching { PROFINIT 7

? Different from (proprietary) Databricks Disk Cache — optimized caching on SSDs
Feature disk cache Apache Spark cache

In-memory blocks, but it depends

Stored as Local files on a worker node.
on storage level.

Any Parquet table stored on S3, ABFS, and other file

Applied to Any DataFrame or RDD.

systems.

Triggered Automatically, on the first read (if cache is enabled). Manually, requires code changes.

Evaluated Lazily. Lazily.

Force CACHE SELECT command .cache + any action t_o materialize

cache the cache and .parsist.

— Can be enabled or disabled with configuration flags, ‘

Avallability enabled by default on certain node types. Always available.

Evicted Automatically in LRU fashion or on any file change, Automatically in LRU fashion,
manually when restarting a cluster. manually with unpersist.

? Cache consistency:

- Databricks disk caching — changes are automatically detected and cache is updated

- Spark caching — cache must be manually invalidated and refreshed

Spark Architecture

Components of Spark Architecture { PROFINIT 7

7 Driver
- Itis a master node.
- Translates user code into a specified job.
- Schedules the job execution and negotiates with the cluster manager.
- Stores the metadata about all RDDs as well as their partitions.

- The key componentis a SparkContext, others are DAG Scheduler, Task scheduler, backend scheduler and block manager.

7 Executors
- They are distributed agents those are responsible for the execution of tasks

- They perform all the data processing

> Cluster Manager
- Responsible for acquiring resources

Cluster Manager

Spark data partitions { PROFINIT 7

? Partition
— part of data managed in one task
— default partition = 1 HDFS block = 1 task = 1 core
— partition is ideally managed on the node where is stored — data locality!
— More partitions = more tasks = higher parallelization
= smaller data = lower efficiency = higher overhead
) Default for Joins:

— The default number of partitions to use when shuffling data for joins or aggregations.

- spark.sql.shuffle.partitions = 200

? How to change number of partition?
— inload: sc.textFile(file, count of partitions)
— Inthe code (before/after specific transformation/action):
* coalesce (count of partitions)
* repartition(count_of partitions)

* partitionBy (count of partitions)

Data locality & shuffling { PROFINIT 7

Storage RDD4 RDDy RDD,
load transformations shuffle
s v Lo .
co-partitioned
join {no shuffle)
. > o > p g
RDD, RDD, Results
B o 4) o [
- transformations action —}\
P P
b 3 & '
} p » p
Storage RDD, RDD, RDD final result |
. 4 >
. Inad transformations shuffle x P P
P P
: ¥ p p
¢ g
. P » b5 .~/
. > o > o 4
= 2)

Start and configuration

pyspark | spark-shell | spark-submit
Useful parameters:

--name -> name of the application

--class -> The entry point for your application

--master -> The master URL for the cluster (local, Yarn, Mesos, ..)
--deploy_mode -> where the driver will be deployed (client/cluster)
--driver-memory -> memory for driver

--num-executors -> count of executors

--executor-cores -> count of cores for executor

--executor-memory -> memory for executor

NOTE: Spark is deployed in Databricks clusters by default and Spark Context (Spark session) is initialized,

you don‘t need to care about running Spark on your own

{ PROFINIT 7

--param value

Deploy mode

Deploy mode (execution mode)

? Deploy mode

? Deploy mode types:
— Local mode
— Client mode
— Cluster mode

7 Differences:
> Where the driver runs — client or cluster ?
> Where the executors run - client or cluster ?

> Whatis cluster manager — spark CM or 3rdParty (yarn, messos, ..)

Driver
| SparkContext | DAGScheduler || Taskscheduler|

Determines where the resources used by Spark application are physically located

Executor
Task | Task

|

—

«— Cluster Manager|*—*

Executor

Task | Task
§

N

Executor

{ PROFINIT 7

Deploy mode: Local mode { PROFINIT 7

? Properties:
> The entire application is run on a single machine (paralelism through threads)
» The Spark driver runs on the client machine
» The Executor processes run on the client machine
» Spark CM is used
> Used on Databricks single node clusters
7 Purpose:
» Development
> Debugging
» Testing

Deploy mode: Client mode { PROFINIT 7

? Properties
» The Spark driver runs on the client machine that submitted the application (usually an edge node)
» The executor processes run on cluster
> Cluster manager is used
> On Databricks multi-node clusters in interactive environment (e.g. Notebook)
? Purpose
> Spark-shell (interactive sessions)
» Easy debugging
> Input and output attached

» Can overload the edge node

Deploy mode: Client mode (example for YARN)

Client application

Application commands

YARM Container

Issue application commands
Launch Spark Executor

YARN NodeManager

YARN Contaier YARN Container

YARN Resource
Manager

il
-'/Wu«e

{ PROFINIT 7

Deploy mode: Cluster mode { PROFINIT 7

? Properties
» The Spark driver runs on a worker node inside the cluster
» The executor processes run on cluster
> The cluster manager maintans the executor processes
» Databricks job clusters
? Purpose
> The best deploy mode for stable applications
» Better resource utilization than in client mode

> More difficult debugging

Deploy mode: Cluster mode (example for YARN)

Client

Launch application

YARN Container

Issue application commands
Launch Spark Executor

YARN NodeManager

YARN Contaier YARM Container

YARN Resource
Manager

{ PROFINIT 7

Spark configuration

Spark executor memory { PROFINIT

Yarn.nodemanager.resource.memory-mb

Executor container

spark.executor.meimory (heap space)

spark.yarn.executor. Reserved
MemoryOverhead memo
Max(384MB, 10% of (stmvzz sparlf.memory. spark.memory. Us.ezrsr:re;::rv
spark.executor.memory) il fraction storageFraction structures
BYTES) 7
| l
I \
300MB Default: 0.6 Default: 0.5 1 — spark.memory.fraction
? Reserved - the memory is reserved for the system and is used to store Spark’s internal object. The size is hardcoded.
? User Memory - It's used for storing your data structures and data needed for RDD conversion operations, such as lineage.

? Unified memory:

+ Execution memory - It's mainly used to store temporary data in the calculation process of Shuffle, Join, Sort, Aggregation,
etc.

+ Storage Memory - It's mainly used to store Spark cache data, such as RDD cache, Unroll data, and so on.
» Size of an Execution and Storage memory can by dynamically changed by the Dynamic occupancy mechanism process.

7 Memory overhead - Off heap (no GC). Call stacks, shared libraries, constants defined in Code, the code itself,

Spark executor memory example { PROFINIT 7

? Spark.executor.memory = 4 GB

— Memory overhead = 10% of executor memory, max 384 MB
— Reserved memory = 300 MB

— User Memory = (Java Heap — Reserved Memory) * (1.0 — spark.memory.fraction) = (3640-300)* (1-
0,6)= 1336 MB

— Storage Memory = (Java Heap — Reserved Memory) * spark.memory.fraction *
spark.memory.storageFraction = (3640-300)*(0,6*0,5)= 1002 MB

— Execution Memory = (Java Heap — Reserved Memory) * spark.memory.fraction * (1.0 —
spark.memory.storageFraction) = (3640-300)*(0,6*0,5)=1002 MB

Resources configuration: Settings { PROFINIT 7

Available settings:

? spark.driver.memory
— Size of the Spark driver in MB
— Default 1024MB
? spark.executor.memory
— Size of the each Spark executor in MB
— Default 1024MB
? spark.executor.cores
— The number of virtual cores that will be allocated to each executor
— Default 1 (YARN)
? Spark.dynamicAllocation.enabled

— Allows Spark dynamically change the number of executors based on the workload

Resources configuration: Spark Driver { PROFINIT 7

Considerations:
> Client or cluster mode
) With the client mode — beware of overloading Edge node

) Size of the result returned by executor (collect action)

Resources configuration: Spark Executor { PROFINIT 7

Considerations
? Resources available in the cluster, sizing of cluster nodes

? Few large executors or many small executors?

— Small executors
* Higher parallelization but more shuffling
* One partition - one executor, risk of spilling the data to disk
* Total overhead grows (Reserved memory)
— Large executors
* Lower parallelization
* Issue with resources allocation
* Might be wasteful
* GC overhead

Resources configuration: Recommendations { PROFINIT 7

» Allows Spark dynamically change the number of executors based on the workload
* Number of cores — deside based on the load. Usually 2 - 4 cores/executor
» Driver memory — keep default

* Executor memory — ((data size) *1,5)/0,6) / number of executors (max 16G)

For start use spark.executor.memory = 2G.

* Number of executors - number of task / executor > 100

For start use spark.dynamicAllocation.maxExecutors <10.

* For long running processes set spark.sql.ui.retainedExecutions <= 100 (default 1000)

Spark vs Databricks

Spark vs Databricks { PROFINIT 7

7

Databricks

Tool/platform built on top of Apache Spark

Add other functionality, e.g. Notebooks, production jobs and workflows, etc.

Databricks runtime

* Built on Apache Spark and optimized for performance

Photon engine

Disk caching, dynamic file pruning, predictive 1/O, cost-based optimizers, etc.
Auto-scaling compute

Pre-installed Java, Scala, Python and R libraries

Apache Spark is running on Databricks clusters

« Can set spark configuration on cluster level and change some configurations during runtime
* Managed Delta Lake

* You cannot set spark configuration for managed compute (SQL warehouse)

{ PROFINIT 7

Q&A

PROFINIT

Thanks for attention!

Profinit EU, s.r.0. in LINKEDIN f FACEBOOK
Tychonova 2, 160 00 Praha 6 linkedin.com/company/profinit facebook.com/Profinit.EU
X TWITTER fip YOUTUBE

Tel.: + 420 224 316 016, web: www.profinit.eu @profinit_EU Profinit EU, s.r.o.

	Snímek 1: Apache Spark - basics
	Snímek 2: Outline
	Snímek 3: Outline
	Snímek 4: Spark overview
	Snímek 5: The What, Why and When of Apache Spark
	Snímek 6: Spark - facts
	Snímek 7: Apache Spark Evolution
	Snímek 8: When does Spark work best?
	Snímek 9: When Spark is not so good / appropriate?
	Snímek 10: How to work with Spark?
	Snímek 11: How Spark works
	Snímek 12: Logical point of view
	Snímek 13: Technical point of view
	Snímek 14: Example – word count
	Snímek 15: Example – word count
	Snímek 16: Spark Dataframes
	Snímek 17: Spark SQL and DataFrames (DataSets)
	Snímek 18: WHY use DataFrames
	Snímek 19: How to get a DataFrame?
	Snímek 20: How to work with a DataFrame?
	Snímek 21: Example – word count with Dataframes
	Snímek 22: Example – word count with Spark SQL
	Snímek 23: Spark Actions
	Snímek 24: Spark Actions
	Snímek 25: Spark Actions
	Snímek 26: Spark Caching
	Snímek 27: Spark Caching
	Snímek 28: Spark Architecture
	Snímek 29: Components of Spark Architecture
	Snímek 30: Spark data partitions
	Snímek 31: Data locality & shuffling
	Snímek 32: Start and configuration
	Snímek 33
	Snímek 34: Deploy mode
	Snímek 35: Deploy mode (execution mode)
	Snímek 36: Deploy mode: Local mode
	Snímek 37: Deploy mode: Client mode
	Snímek 38: Deploy mode: Client mode (example for YARN)
	Snímek 39: Deploy mode: Cluster mode
	Snímek 40: Deploy mode: Cluster mode (example for YARN)
	Snímek 41: Spark configuration
	Snímek 42: Spark executor memory
	Snímek 43: Spark executor memory example
	Snímek 44: Resources configuration: Settings
	Snímek 45: Resources configuration: Spark Driver
	Snímek 46: Resources configuration: Spark Executor
	Snímek 47: Resources configuration: Recommendations
	Snímek 48: Spark vs Databricks
	Snímek 49: Spark vs Databricks
	Snímek 50: Q&A
	Snímek 51: Thanks for attention!

