B0M33BDT - Azure

Petr Filas 4.12.2024

Agenda

- > Fundamentals
- > Data Services
- > Databricks
- > AI/ML Services

Azure (fundamentals)

Management levels and hierarchy

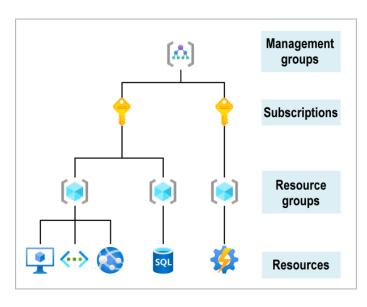
Four levels of management

1. Resources

 Instance of a cloud service (e.g. different types of storages, databases, compute services, virtual machines...).

2. Resource groups

- Containers that hold related resources for an Azure solution.
 - Enables to configure multiple resources at once, delete all resources within it etc.
- Can't be nested.
- Associated with one region and subscription.
 - Can contain resources from different regions!

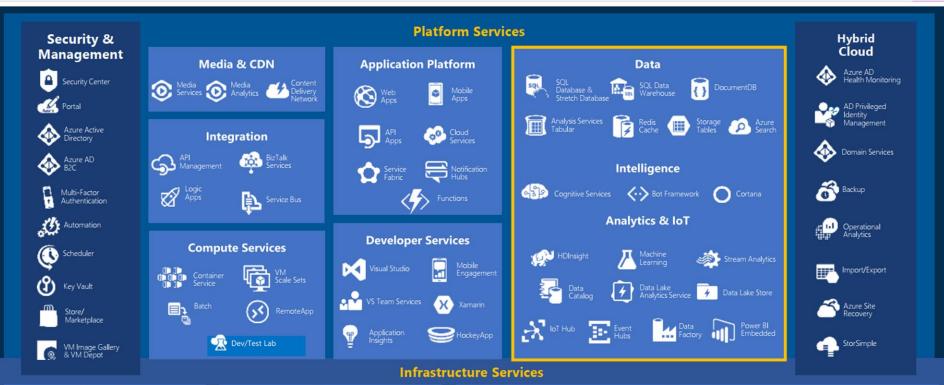


3. Subscriptions

- Groups resource groups.
- Used for billing purposes, setting limits on spending etc.
- Can't be nested.

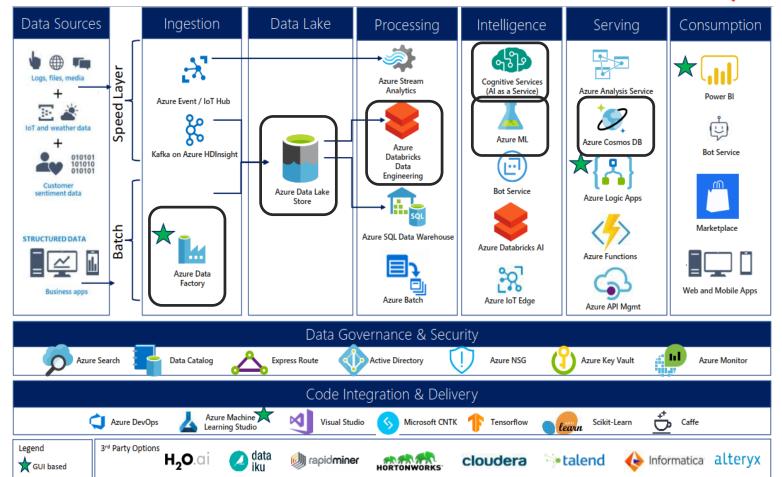
4. Management groups

- Manage access, policies, and compliance for multiple subscriptions or other management groups (can be nested).
- Max. 7 levels of depth, one root management group.


How to create a resource

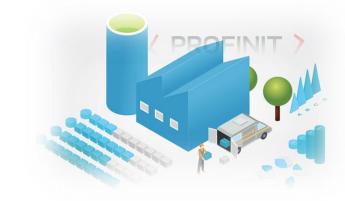
- Create Management Group (not necessary)
- Create Subscription
- Create Resource Group
- Create Resource
 - ARM template (Azure Resource Manager) resource definition in JSON
 - Bicep Domain Specific Language (DSL)
 - CLI (Command Line Interface) az utility
 - Manually in Azure Portal

Azure stack



A

BDDS Stack


Relevant BD resources in Azure

- Azure Data Factory
- > Azure Storage Account / Storage Account Services
- > Azure Databases
- > Azure Fabric
- > Azure Databricks
- Azure ML & Azure Cognitive services
- Azure HDInsight

Azure (Big) Data Services

Azure Data Factory (ADF)

- Data integration service.
- GUI for creating data-driven workflows for orchestrating data movement/transformation.
- , "Pay-as-you-go" billing model.

Code-Free ETL as a service

Ingest

- Multi-cloud and onpremise hybrid copy data
- 100+ native connectors
- Serverless and autoscale
- Use wizard for quick copy jobs

Control Flow

- Design code-free data pipelines
- Generate pipelines via
 SDK
- Utilize workflow constructs: loops, branches, conditional execution, variables, parameters, ...

Data Flow

- Code-free data transformations that execute in Spark
- Scale-out with Azure Integration Runtimes
- Generate data flows via SDK
- Designers for data engineers and data analysts

Schedule

- Build and maintain operational schedules for your data pipelines
- Wall clock, event-based, tumbling windows, chained

Monitor

- View active executions and pipeline history
- Detail activity and data flow executions
- Establish alerts and notifications

Key components of ADF

1. Datasets

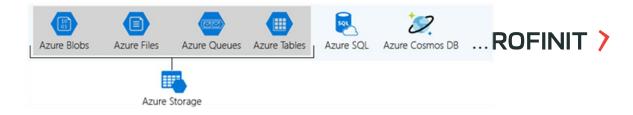
- Named view of data that simply points or references the data.
 - "pointer to a data structure"
- Used for both input/output.
- E.g..: csv file in Blob Storage, database table, file on the internet (only as input) ...

2. Mapping Data Flows

- Graphs of data transformation logic for transforming data of any size.
- Executed on a Spark cluster that spins-up and spins-down when you need it.
 - No need to ever manage/maintain a cluster.
- Used as an activity.

Key components of ADF

3. Activities (Tasks)


- Processing steps, actions, in a pipeline.
- Almost 100 different activities.
- E.g..: copy data activity (from one dataset to another), Hive activity that runs
 query on HDInsight cluster, Databricks notebook launch activity...

4. Pipelines

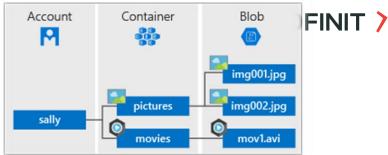
- Logical grouping of activities that performs a unit of work.
- Can be chained together to operate sequentially, or they can operate independently in parallel.
- Can be parametrized, uses variables, control flows (branching, for-each iterators...).

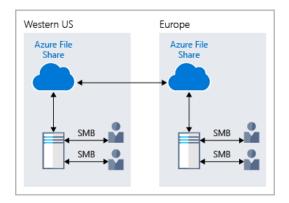
Storage Account

- Azure Storage offers several types of storage services.
- Data can be accessed from anywhere using HTTP/HTTPS.
 - https://<storage-account>.blob.core.windows.net
 - Globally unique name!
- Data in SA are highly available, secured a massively scalable.
- Configurable redundancy, disk types.
 - Locally redundant, zone-redundant, geo-redundant...

Storage Account services

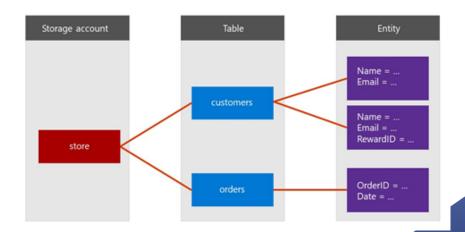
Blob storage


- Good for large unstructured data.
- Cheapest storage option on Azure.
- Container structure for organizing blobs.



2. Azure files

- Fully managed Azure file share service.
- Can be easily mounted on Windows, Linux, MacOS.
- Server Message Block (SMB) Protocol
 - network file sharing protocol


3. Azure Queue

- Storing large numbers of messages (to 64 KB).
- Communication between apps (on-premise + cloud).

4. Azure Tables

- Structured NoSQL data.
- Schema-less design.

5. Azure Data Lake Storage (ADLS)

- Comprehensive, scalable, and cost-effective data lake solution for highperformance big data analytics built into Azure
- Gen1 (Apache HDFS), Gen2
- ADLS Gen2 = Azure Blob Storage + ADLS Gen1

Azure Data Lake Storage Gen2

Azure Databases

Many SQL/NoSQL databases for various use cases.

> Azure Database Migration Service

- Tool to simplify, guide, and automate database migration to Azure.
- Convenient migration with near-zero downtime.
- MySQL, PostgreSQL, MongoDB...

Azure SQL Databases

- Azure Database for MariaDB, Azure Database for PostgreSQL, different SQL options
 - Depends on how much control over the OS we need.
 - Oracle Oracle Cloud Infrastructure
-) laaS
- > PaaS
 - Auto scaling.
 - Pay only for what you really use.

SQL Server on Azure Virtual Machines

Best for re-hosting and apps requiring OS-level access and control

Automated manageability features and OS-level access Azure SQL Managed Instance

Best for modernizing existing apps

Offers high compatibility with SQL Server and native VNET support Azure SQL Database

Best for building new apps in the cloud

Pre-provisioned or serverless compute and Hyperscale storage to meet demanding workload requirements

Azure Cosmos DB

Globally distributed, multi-model database service for any scale.

- NoSQL, big data.
- Guaranteed single-digit millisecond response times at any scale and 99.999-percent availability (99.999 SLA – highest on Azure).
- Automatic and instant scalability.
- > SQL API, MongoDB API, Gremlin API (graphDB), Cassandra API, Table API.
- > Good for data consuments (cache)

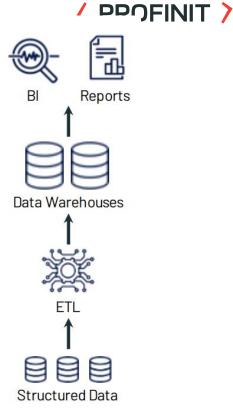
Azure Synapse Analytics

- Platform that brings together data integration, enterprise data warehousing, and big data analytics.
- > SQL pool & Spark pool & Synapse pipelines (Data Factory)
- Challanger for Databricks

Azure Fabric

- All-in-one analytics solution that covers everything from data movement to data science, Real-Time Analytics, and business intelligence
- OneLake + Azure Data Services
- A real Challanger for Databricks?

Azure components availability


- > Differs region to region
- > See: https://azure.microsoft.com/en-us/global-infrastructure/services/

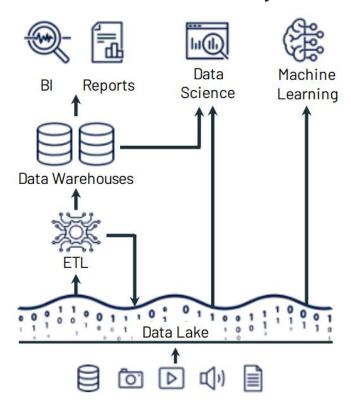
Databricks

Data Warehouse

- Minimal support for video, audio, text
- Long history in decision support and business intelligence applications
- limited support for streaming

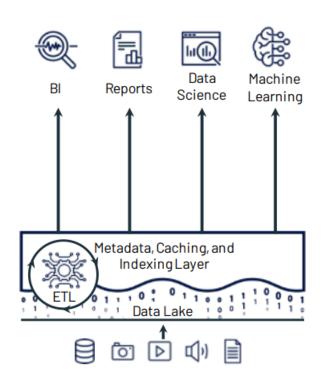
→ therefore, most data stored in **Data Lakes**, only subset of it in DWHs

Data Lake

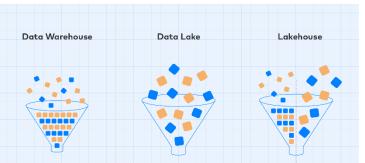

- Does not support transactions.
- Does not enforce data quality.
- Where DWH is good tool, Data Lake not so much:
 - poor BI support,
 - complex to set up and configure,
 - poor performance (when used i.e., for BI).

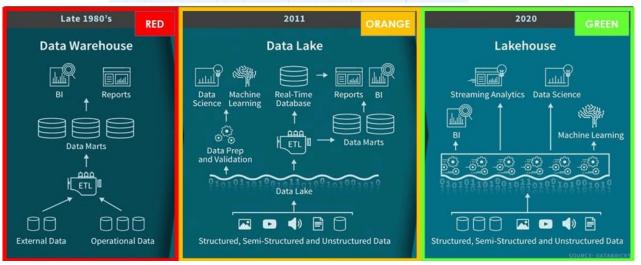
- Why to use it then? + Can handle all data
 - for ML, data science ...

DWH + Data Lake


- PROFINIT >
- Companies have Data Lakes and Data Warehouses side by side
 - Reusing current setup,
 - data duplication,
 - higher cost, administrative burden..
 - NOT ideal setup.

- So, how it can be improved?
 - Lakehouse




Data Lakehouse

- Paradigm that brings the best of the two
- + Has structured transactional layer
- + Reduces data movement and complexity
- + Reduces cost
- + Support for diverse workloads
 - data science, machine learning,
 SQL, analytics ...
- > + Openness
 - open and standardized formats

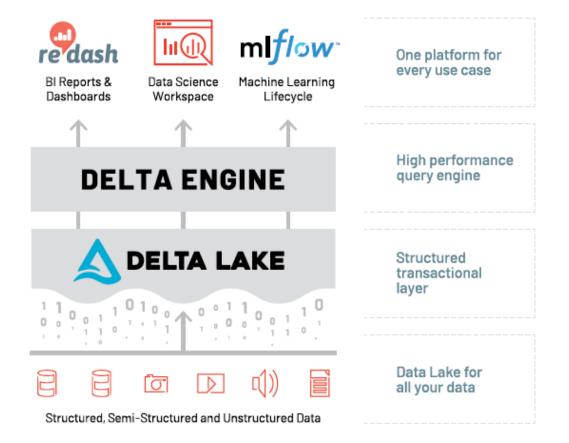
As time passes...

Difference recap

	Data Warehouse	Data Lake	Data Lakehouse
Storage Data Type	Works well with structured data	Works well with semi- structured and unstructured data	Can handle structured, semi-structured, and unstructured data
Purpose	Optimal for data analytics and business intelligence (BI) use-cases	Suitable for machine learning (ML) and artificial intelligence (AI) workloads	Suitable for both data analytics and machine learning workloads
Cost	Storage is costly and time-consuming	Storage is cost-effective, fast, and flexible	Storage is cost-effective, fast, and flexible
ACID Compliance	Records data in an ACID- compliant manner to ensure the highest levels of integrity	Non-ACID compliance: updates and deletes are complex operations	ACID-compliant to ensure consistency as multiple parties concurrently read or write data

As Azure stack...

Modern Data Warehouse


Data Lakehouse

Single Combined Platform

(Data) Lakehouse by Databricks

Delta Lake by Databricks

- Open-source storage format that brings ACID transactions to Spark and big data workloads
- > Spark under the hood, Indexing techniques, schema validation & expectations
- > Foundation of a **cost-effective**, highly scalable lakehouse
- > Single home for structured, semi-structured and unstructured data
- Unifies batch and streaming data processing
- Open format based on parquet

Databricks

- Collaborative cloud unified data platform
 - for the entire data team (data scientists, analysts, engineers...)
- > Builds on top of open-source software (Spark, MLFlow, Delta Lake...)
- Multilanguage notebooks (similar to Jupyter or Zeppelin)
 - Python, R, Scala, SQL
-) Databricks SQL
 - Easily explore Delta Lake table schemas and optimize it
-) Dashboards

What are all the Delta things in Databricks?

https://docs.databricks.com/en/introduction/delta-comparison.html

Azure Databricks Demos

- > Databricks Demo Hub
 - Product demos various use cases.
 - Simple notebooks, easily importable to your workspace using an URL.
- Certifications Databricks
 - Be Databricks Certified professional!

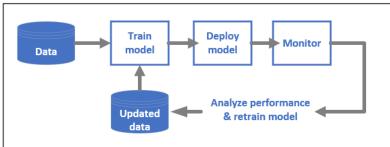
Azure Databricks vs Azure Synapse Analytics

- Proprietary data processing engine (Databricks Runtime) built on a highly optimized version of Apache Spark offering up to 10x performance
-) Databricks notebooks
 - Changes in real time
- Data lake must be mounted in order to use it

- Open-source Apache Spark (vanilla version)
- Nteract notebooks
 - One user has to save before changes are displayed
- Data lake can be added as a Linked Service
 - Direct access

Azure AI/ML Services

Azure ML

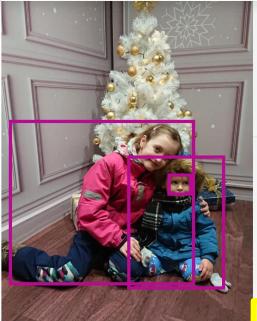

PROFINIT >

Service for accelerating and managing ML project lifecycle (end-to-end).

Collaboration for machine learning teams

- Shared notebooks, compute resources, data, and environments.
- > Tracking and auditability that shows who made changes and when.
- Versioning.
- > Supports PythonSDK, R and other ML frameworks.
- Multinode distributed training, compute clusters with latest GPU options.
- MLOps

Cognitive Services


- Customizable, pretrained models built with breakthrough Al research (ML expertise not needed).
- 999

- Speech (text ↔ audio, translations, speaker verification...)
- Computer vision (detect and identify people, identify emotions...)
- Search (autosuggest, visual search, web search...)
- and others
- Supports a wide range of cultural languages at the service level.
- > Examples:
 - https://azure.microsoft.com/cs-cz/services/cognitive-services/computervision/#features
 - https://azure.microsoft.com/cs-cz/services/cognitive-services/face/#demo

Cognitive Services example

"smile", "confidence": 0.826899648 }, {
"name": "baby", "confidence":
0.817665756 }, { "name": "christmas",
"confidence": 0.7937247 }, { "name":
"child", "confidence": 0.6052515 }]

{ "tags": ["person", "indoor", "child", "baby", "sitting", "table", "little", "stuffed", "holding", "toy", "small", "teddy", "girl", "floor", "young", "boy", "bear", "wooden", "playing", "bed", "laying", "blue", "white"], "captions": [{ "text": "a baby holding a stuffed animal", "confidence": 0.6358383 }] }

Azure OpenAl Service

- > REST API access to OpenAI's powerful language models
 - GPT-4, GPT-3, Embeddings, DALL-E, and Whisper
- > Azure OpenAl Services vs OpenAl
 - Azure OpenAl Services = Azure + OpenAl
 - Benefits of integration to other Azure Services
- > Key concepts
 - Prompts & completions
 - Tokens (\$\$\$)
 - Resources and Deployments
 - Prompt engineering
 - Models

Obsolete Azure Services

HDInsight

- > "Azure Hadoop" ☺
- Managed, full-spectrum, open-source analytics service.
- Open-source frameworks such as:
 - Hadoop, Apache Spark, Apache Hive, LLAP, Apache Kafka, Apache Storm, R, and more, in Azure environment.
- Seamless integration with the most popular <u>big data</u> solutions with a one-click deployment.
- > Low-cost and scalable.
 - Decoupled compute and storage.
 - Clusters on demand.

Summary

Summary

- Storage is cheap Compute is expensive
- > Unlimited scalability, support of any architecture
- Common architectures for Data Engineering and Data Science
- Some services compete with each other
 - Price vs performance
 - Open-source vs proprietary

Questions?

Profinit EU, s.r.o. Tychonova 2, 160 00 Praha 6

Tel.: + 420 224 316 016, web: www.profinit.eu

