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10. Multi-objective least squares

e multi-objective least squares
e regularized data fitting
e control

e estimation and inversion
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Multi-objective least squares

we have several objectives
_ 2 _ 2
Ji=[Aix=b1ll5, ..., Ji=[[Akx = bl

e A;is an m; X n matrix, b; is an m;-vector
e we seek one x that makes all k objectives small

e usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes
2 2
AllArx = Dy||” + - + Al Agx — bl

e coefficients Ay, ..., A} are positive weights
e weights A; express relative importance of different objectives

e without loss of generality, we can choose 4| = 1
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Solution of weighted least squares

e weighted least squares is equivalent to a standard least squares problem

minimize

VA ]
VA2 A,

| VARA |

[ VA1b;
V207

| Vb

2

e solution is unique if the stacked matrix has linearly independent columns

e ecach matrix A; may have linearly dependent columns (or be a wide matrix)

e it the stacked matrix has linearly independent columns, the solution is

—1
X = (/llA{Al + -+ ﬂkA?;Ak) (/llA{bl + -+ /lkA{bk)
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Example with two objectives

minimize |[Ajx — blll2 + A||Arx — 192||2

Arand A are 10 X 5
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plot shows weighted least squares solution X(1) as function of weight A
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Example with two objectives

minimize |[Ajx — b1||2 + A||Arx — 192||2

Jo(A)

14|

12 |

Ji(2)

e |eft figure shows Ji(1) = ||A1X(A) — ]91”2 and Jo(A) = ||Axx(A) — l?2||2

e right figure shows optimal trade-off curve of J>(1) versus J;(A1)
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Motivation

e consider linear-in-parameters model

F(x) =01 fi(x) + -+ + 0y fp(x)

we assume fi(x) is the constant function 1
e we fit the model F(x) to examples (x(1, y(D), .. (xV), y(N)y
e large coefficient 8; makes model more sensitive to changes in f;(x)
e keeping 6, ..., 6, small helps avoid over-fitting

e this leads to two objectives:
A (k) (k)\2 & 2
Ji(0) = D (fF™) = y™)% () = >
k=1 j=2
primary objective J;(0) is sum of squares of prediction errors

Multi-objective least squares 10.6



Weighted least squares formulation

N p
minimize J1(0) + 1J»(0) = Z(f(x(k)) - y(k))z +4 Z 812'
k=1 Jj=2

e A is positive regularization parameter
e equivalent to least squares problem: minimize

H[ﬂz] [yodl

2

[ 1 fz(x(l)) fp(x(l)) 1 0 1 0 0
A = 1 fz()f(z)) fp()f(z)) L A= (:) (:) 1 § (:)
L 1AEMY) e 60T (000 - 1]

e stacked matrix has linearly independent columns (for positive A)
e value of A can be chosen by out-of-sample validation or cross-validation
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Example

elrain
-1} e Test | |

e solid line is signal used to generate synthetic (simulated) data
e 10 blue points are used as training set; 20 red points are used as test set

e we fit a model with five parameters 6y, ..., 05:

4
f(x) = 61+ > Opsr sin(wrx + ¢)  (with given wy, ¢y)
k=1
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Result of regularized least squares fit

RMS error versus A Coefficients versus A
1.2 [~ f f f f f — 2 [ T T T T T ]
— Train — 01— 6,
1| |— Test S e NG
| O
0.8} N
0.6 | 0
04+ e T
_1 I °

0.2 |

0+ : 9l e

10> 1073 107t 100 10° 10° 10> 1073 107t 10! 10°
A A
e minimum test RMS error is for A around 0.08
e increasing A “shrinks” the coefficients 6,, ..., 05
e dashed lines show coefficients used to generate the data

e for A near 0.08, estimated coefficients are close to these “true” values
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Control

y=Ax+b

e X is n-vector of actions or inputs
e vy is m-vector of results or outputs

e relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y
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Optimal input design

Linear dynamical system
y(t) = hou(t) + hju(t — 1) + hou(t —2) + - - - + hu(0)

e output y(¢) and input u(t) are scalar
e we assume input u(t) is zero fort < 0
e coefficients hg, hq, ...are the impulse response coefficients

e output is convolution of input with impulse response

Optimal input design
e optimization variable is the input sequence x = (u(0),u(1),...,u(N))

e goal is to track a desired output using a small and slowly varying input
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Input design objectives

minimize Jy(x) + AyJy(x) + AmJIm(x)

e primary objective: track desired output yq4.s over an interval [0, N]:
J 2
J(x) = > (5(t) = Yaes(t))
=0

e secondary objectives: use a small and slowly varying input signal:

N N—-1
In(x) = D u@®?  Jy(x) = >+ 1) — u(@))?
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Tracking error

N
J(x) = D) - vaes(t)”
=0
= [|Ax — by
with
hh 0 0 -~ 0 0]
o hg 0O - 0 0
I
hn-1 hn—2 hn—3 -+ hp O
hy  hn-1 hy—2 -+ h1 hy |
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Input variation and magnitude

Input variation

N-1
Jy(x) = D (u(t + 1) — u(t))* = || Dx||*
=0

with D the N X (N + 1) matrix

(-1 1.0 --- 0 0 O

o -1 1 --- 0 00

D = s P : -
o 00 --- -1 10

o o0 -~ 0 -1 1

Input magnitude

N
Jn(x) = > ut)* = ||x||”

=0
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Example

0
-
/les E/

small Ay

-2+

0 100 200 0 100 200

larger Ay 3
larger Am

0 100 200 0 100 200
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Estimation

Linear measurement model
V= AXex +V

e n-vector xex contains parameters that we want to estimate
e m-vector v is unknown measurement error or noise
e m-vector y contains measurements

e m X n matrix A relates measurements and parameters

Least squares estimate: use as estimate of x.x the solution X of

minimize |[|Ax — y||2
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Regularized estimation

add other terms to ||Ax — y||? to include information about parameters

Example: Tikhonov regularization
L 2 2
minimize ||[Ax — y||* + A]|x]|

e goal is to make ||Ax — y|| small with small x

e equivalent to solving
(ATA+ADx = Aly

e solution is unique (if 4 > 0) even when A has linearly dependent columns
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Signal denoising

e observed signal y is n-vector

Y = Xex TV

® Xcx iS unknown signal

® V iS noise

0 500 1000

Least squares denoising: find estimate X by solving

n—1
minimize  ||x — y||* + A Z(xi+1 — x;)°
i=1

goal is to find slowly varying signal X, close to observed signal y
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Matrix formulation

2
minimize ! X — Y
VaD 0
e Dis (n— 1) X n finite difference matrix
(-1 1 0 --- 0 0 0
0O -1 1 O 0 O
D = : : :

0O 0 O -1 1 O
0O O O 0 -1 1

e equivalent to linear equation

(I+AD'D)x =y
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Trade-off

the two objectives ||X(1) — y|| and ||Dx(A)|| for varying A

10

— I3 -yl
| — D]

IDX(D)|

=10°

107> 109 10° 1010 0 2 4 6 8 10

P 1£(2) =yl

Multi-objective least squares 10.20



Three solutions

A=10""

()
()

0 500 1000 0 500 1000
k k
1.5 1=10
e {(1) > yfora—0 e
S |
e X(1) — avg(y)l for A — o «
e 1~ 10%is good compromise
0.5 -
0 500 1000
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