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10. Multi-objective least squares

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion
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Multi-objective least squares

we have several objectives

J1 = ‖A1x − b1‖2, . . . , Jk = ‖Ak x − bk ‖2

• Ai is an mi × n matrix, bi is an mi-vector

• we seek one x that makes all k objectives small

• usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes

λ1‖A1x − b1‖2 + · · · + λk ‖Ak x − bk ‖2

• coefficients λ1, . . . , λk are positive weights

• weights λi express relative importance of different objectives

• without loss of generality, we can choose λ1 = 1
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Solution of weighted least squares

• weighted least squares is equivalent to a standard least squares problem

minimize











√
λ1A1√
λ2A2
...√
λk Ak

 x −

√
λ1b1√
λ2b2
...√
λkbk


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• solution is unique if the stacked matrix has linearly independent columns

• each matrix Ai may have linearly dependent columns (or be a wide matrix)

• it the stacked matrix has linearly independent columns, the solution is

x̂ =
(
λ1AT

1 A1 + · · · + λk AT
k Ak

)−1 (
λ1AT

1 b1 + · · · + λk AT
k bk

)
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Example with two objectives

minimize ‖A1x − b1‖2 + λ‖A2x − b2‖2

A1 and A2 are 10 × 5
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plot shows weighted least squares solution x̂(λ) as function of weight λ
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Example with two objectives

minimize ‖A1x − b1‖2 + λ‖A2x − b2‖2
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• left figure shows J1(λ) = ‖A1 x̂(λ) − b1‖2 and J2(λ) = ‖A2 x̂(λ) − b2‖2

• right figure shows optimal trade-off curve of J2(λ) versus J1(λ)
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Motivation

• consider linear-in-parameters model

f̂ (x) = θ1 f1(x) + · · · + θp fp(x)

we assume f1(x) is the constant function 1

• we fit the model f̂ (x) to examples (x(1), y(1)), . . . , (x(N), y(N))
• large coefficient θi makes model more sensitive to changes in fi(x)
• keeping θ2, . . . , θp small helps avoid over-fitting

• this leads to two objectives:

J1(θ) =
N∑

k=1
( f̂ (x(k)) − y(k))2, J2(θ) =

p∑
j=2

θ2
j

primary objective J1(θ) is sum of squares of prediction errors
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Weighted least squares formulation

minimize J1(θ) + λJ2(θ) =
N∑

k=1
( f̂ (x(k)) − y(k))2 + λ

p∑
j=2

θ2
j

• λ is positive regularization parameter

• equivalent to least squares problem: minimize



[ A1√
λA2

]
θ −

[
yd

0

]
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with yd = (y(1), . . . , y(N)),

A1 =


1 f2(x(1)) · · · fp(x(1))
1 f2(x(2)) · · · fp(x(2))
... ... ...

1 f2(x(N)) · · · fp(x(N))

 , A2 =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1


• stacked matrix has linearly independent columns (for positive λ)

• value of λ can be chosen by out-of-sample validation or cross-validation
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Example
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• solid line is signal used to generate synthetic (simulated) data

• 10 blue points are used as training set; 20 red points are used as test set

• we fit a model with five parameters θ1, . . . , θ5:

f̂ (x) = θ1 +
4∑

k=1
θk+1 sin(ωk x + φk) (with given ωk , φk)
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Result of regularized least squares fit
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• minimum test RMS error is for λ around 0.08

• increasing λ “shrinks” the coefficients θ2, . . . , θ5

• dashed lines show coefficients used to generate the data

• for λ near 0.08, estimated coefficients are close to these “true” values
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Control

y = Ax + b

• x is n-vector of actions or inputs

• y is m-vector of results or outputs

• relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y
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Optimal input design

Linear dynamical system

y(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + · · · + htu(0)

• output y(t) and input u(t) are scalar

• we assume input u(t) is zero for t < 0

• coefficients h0, h1, . . . are the impulse response coefficients

• output is convolution of input with impulse response

Optimal input design

• optimization variable is the input sequence x = (u(0),u(1), . . . ,u(N))
• goal is to track a desired output using a small and slowly varying input
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Input design objectives

minimize Jt(x) + λvJv(x) + λmJm(x)

• primary objective: track desired output ydes over an interval [0,N]:

Jt(x) =
N∑

t=0
(y(t) − ydes(t))2

• secondary objectives: use a small and slowly varying input signal:

Jm(x) =
N∑

t=0
u(t)2, Jv(x) =

N−1∑
t=0
(u(t + 1) − u(t))2
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Tracking error

Jt(x) =
N∑

t=0
(y(t) − ydes(t))2

= ‖Atx − bt‖2

with

At =



h0 0 0 · · · 0 0
h1 h0 0 · · · 0 0
h2 h1 h0 · · · 0 0
... ... ... . . . ... ...

hN−1 hN−2 hN−3 · · · h0 0
hN hN−1 hN−2 · · · h1 h0


, bt =



ydes(0)
ydes(1)
ydes(2)
...

ydes(N − 1)
ydes(N)


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Input variation and magnitude

Input variation

Jv(x) =
N−1∑
t=0
(u(t + 1) − u(t))2 = ‖Dx‖2

with D the N × (N + 1) matrix

D =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


Input magnitude

Jm(x) =
N∑

t=0
u(t)2 = ‖x‖2
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Example
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Estimation

Linear measurement model
y = Axex + v

• n-vector xex contains parameters that we want to estimate

• m-vector v is unknown measurement error or noise

• m-vector y contains measurements

• m × n matrix A relates measurements and parameters

Least squares estimate: use as estimate of xex the solution x̂ of

minimize ‖Ax − y‖2
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Regularized estimation

add other terms to ‖Ax − y‖2 to include information about parameters

Example: Tikhonov regularization

minimize ‖Ax − y‖2 + λ‖x‖2

• goal is to make ‖Ax − y‖ small with small x

• equivalent to solving
(AT A + λI)x = AT y

• solution is unique (if λ > 0) even when A has linearly dependent columns

Multi-objective least squares 10.17



Signal denoising

• observed signal y is n-vector

y = xex + v

• xex is unknown signal

• v is noise
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Least squares denoising: find estimate x̂ by solving

minimize ‖x − y‖2 + λ
n−1∑
i=1
(xi+1 − xi)2

goal is to find slowly varying signal x̂, close to observed signal y
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Matrix formulation

minimize




[ I√

λD

]
x −

[
y

0

]



2

• D is (n − 1) × n finite difference matrix

D =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


• equivalent to linear equation

(I + λDT D)x = y
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Trade-off

the two objectives ‖ x̂(λ) − y‖ and ‖Dx̂(λ)‖ for varying λ
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Three solutions
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• x̂(λ) → y for λ→ 0

• x̂(λ) → avg(y)1 for λ→∞
• λ ≈ 102 is good compromise

0 500 1000

0.5

1

1.5 λ = 105

k

x̂(λ
) k

Multi-objective least squares 10.21


