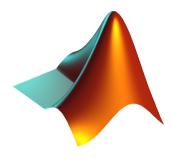
Lecture 4: Relational, Logical, and Set Operators, Searching and Sorting A8B17CAS

Miloslav Čapek


Department of Electromagnetic Field Czech Technical University in Prague Czech Republic miloslav.capek@fel.cvut.cz

Outline

- 1. Relational Operators
- 2. Logical Operators
- 3. Set Operators
- 4. Searching and Sorting

Warm Up: Calendar Analysis

There is function calendar (). Let us play with it! Use MATLAB Editor...

Complete a snippet of code to get:

- ► A row vector of all Mondays in this month.
- ► How many they are?
- ▶ What day was January 1st, 1901?

Relational Operators I.

- ▶ To find out, to compare, whether "something" is greater than, less than, equal to, etc.
- ▶ The result of the comparison is always either
 - ▶ positive (true), logical one "1",
 - ▶ negative (false), logical zero "0".
- ▶ All relation operators are vector-wise.
 - ▶ It is also possible to compare vector vs. vector, matrix vs. matrix, . . .
- ▶ Often in combination with logical operators (see later)
 - ▶ Multiple relational operators can be applied to complex expressions.

```
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
~= not equal to</pre>
```

Relational Operators II.

- ► Having the vector $\mathbf{G} = \begin{pmatrix} \frac{\pi}{2} & \pi & \frac{3\pi}{2} & 2\pi \end{pmatrix}$, find elements of \mathbf{G} that are
 - \triangleright greater than π .
 - \blacktriangleright less than or equal to π ,
 - \blacktriangleright not equal to π .
 - ▶ Try similar operations for $\mathbf{H} = \mathbf{G}^{\mathrm{T}}$.
 - ▶ Find out whether $V \ge U$:
 - $\mathbf{V} = \begin{pmatrix} -\pi & \pi & 1 & 0 \\ \mathbf{V} = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix},$

Relational Operators – Evaluation Goes From Left to Right!

- ▶ Find out the results of following relations.
 - ► Try to interpret the results.

Logical Operators I.

- ► To to find out, whether particular condition is fulfilled.
- ► The result is always either
 - ▶ positive (true), logical one "1",
 - ▶ negative (false), logical zero "0".
- ▶ all, any is used to convert logical array into a scalar.
- ▶ MATLAB interprets any numerical value except 0 as true.
- ► All logical operators are vector-wise.
 - ▶ It is also possible to compare vector vs. vector, matrix vs. matrix, ...

and

► Function is* extends possibilities of logical expressions.

- | or
 - not xor
 - xor all
 - any

Logical Operators II.

Use vector
$$\mathbf{A} = \begin{bmatrix} \frac{\pi}{2} & \pi & \frac{3\pi}{2} & 2\pi \end{bmatrix}$$
 to check the following conditions.

- ▶ Which elements are equal to π or are equal to 2π .
- ▶ Which elements are greater than $\frac{\pi}{2}$ and at the same time are not equal to 2π .

▶ Group elements from the previous condition with vector **A**.

Logical Indexing I.

Assume a vector of 10 random numbers ranging from -10 to 10.

$$a = 20 * rand(10, 1) - 10$$

- ▶ Return true for elements fulfilling the condition.
- ► Return values of those elements fulfilling the condition (logical indexing).
- ▶ Put value of −5 to the position of elements fulfilling the condition.
- ▶ Zero all values in the range from -5 to 5.
- ▶ Thresholding (values below -5 set equal to -5, values above 5 set equal to 5).

a < -5 % relation operator

a(a < -5)

$$a(a < -5) = -5$$

$$a(a > -5 \& a < 5) = 0$$

$$a(a < -5 \mid a > 5) = ...$$

 $sign(a(a < -5 \mid a > 5)) *5$

Logical Indexing II.

- ightharpoonup Create a row vector **k** in the interval from 1 to 20 with step of 3.
- \blacktriangleright Create the vector **m** filled with elements from vector **k** that are:
 - ▶ greater than 10 and at the same time less than 16.
- ▶ Use logical operators.

Logical Operators: Functions all And any

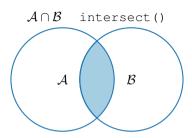
Create matrix **M** and answer following questions using functions all and any.

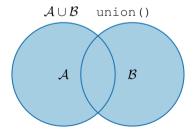
$$M = magic(3);$$

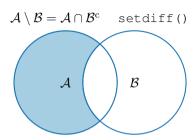
- ▶ In which of the columns are all elements greater than 2?
- ▶ In which of the rows is there at least one element greater than or equal to 8?
- ▶ Does the matrix **M** contain only positive numbers?

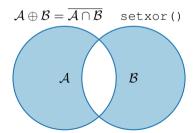
any (
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
) = $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$,

$$\mathrm{all}\,(\left[\begin{array}{ccc}0&1&1\\1&1&0\\0&1&1\end{array}\right])=\left[\begin{array}{ccc}0&1&0\end{array}\right],$$


$$\texttt{any}\,(\texttt{all}\,(\left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right])\,)=\texttt{any}\,(\left[\begin{array}{ccc} 0 & 1 & 0 \end{array}\right]\,)=1$$


Set Operations




- ► Set operations are applicable to vectors, matrices, arrays, cells, strings, tables,...
- ► Mutual sizes of these structures are usually not important.

Function	Description
intersect	intersection of two sets
union	union of two sets
setdiff	difference of two sets
setxor	exclusive OR of two sets
unique	unique values in a set
sort	sorting
sortrows	row sorting
ismember	is an element member of a set?
issorted	is a set sorted?

Set Operations – Dirichlet's theorem

Consider three vectors **a**, **b**, **c** containing natural numbers $x \in \mathbb{N}$ so that:

- ▶ vector **a** contains all primes up to (and including) 1000,
- ▶ vector **b** contains all even numbers up to (and including) 1000,
- ightharpoonup vector **c** is complement of **b** in the same interval.

Find vector \mathbf{v} so that $\mathbf{v} = \mathbf{a} \cap (\mathbf{b} + \mathbf{c})$ and $\mathbf{b} + \mathbf{c} \equiv [b_i + c_i], b_{i-1} < b_i < b_{i+1}, c_{i-1} < c_i < c_{i+1}$.

- \blacktriangleright What elements does **v** contain?
- \blacktriangleright How many elements are there in \mathbf{v} ?

Set Operations – Dirichlet's theorem

Consider three vectors **a**, **b**, **c** containing natural numbers $x \in \mathbb{N}$ so that:

- ▶ vector **a** contains all primes up to (and including) 1000,
- ▶ vector **b** contains all even numbers up to (and including) 1000,
- ightharpoonup vector **c** is complement of **b** in the same interval.

Find vector \mathbf{v} so that $\mathbf{v} = \mathbf{a} \cap (\mathbf{b} + \mathbf{c})$ and $\mathbf{b} + \mathbf{c} \equiv [b_i + c_i], b_{i-1} < b_i < b_{i+1}, c_{i-1} < c_i < c_{i+1}$.

- \blacktriangleright What elements does **v** contain?
- \blacktriangleright How many elements are there in \mathbf{v} ?

V = Columns 1 through 18 3 7 11 19 23 31 43 47 59 67 71 79 83 103 107 127 131 139 Columns 19 through 36 151 163 167 179 191 199 211 223 227 239 251 263 271 283 307 311 331 347 Columns 37 through 54 359 367 379 383 419 431 439 443 463 467 479 487 491 499 503 523 547 563 Columns 55 through 72 571 587 599 607 619 631 643 647 659 683 691 719 727 739 743 751 787 811 Columns 73 through 87 823 827 839 859 863 883 887 907 911 919 947 967 971 983 991 ans = 87

Array Sorting

Sort array elements:

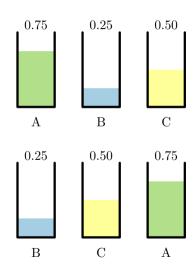
- ▶ column-wise, in ascending order:
- ► row-wise, in ascending order:
- ▶ in descending order:
- ▶ in descending order, row-wise:

- >> sort(A)
- >> sort(A, 2)
- >> sort(A, 'descend')
- >> sort(A, 2, 'descend')

Function sortrows sorts rows of a matrix.

▶ Elements of the rows are not swapped – rows are sorted as blocks.

$$\left[\begin{array}{ccc} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{array}\right]$$


$$\left[\begin{array}{c|c|c}
3 & 1 & 2 \\
4 & 5 & 6 \\
8 & 9 & 7
\end{array}\right]$$

Sort Multiple Data Sets

▶ When more data sets have to be sorted in the same order, get the ordering (ind below) and use it for array re-indexing:

```
bName = ["A", "B", "C"];
bVolume = [0.75, 0.25, 0.50];
[~, ind] = sort(bVolume);
bNameSorted = bName(ind)
bVolumeSorted = bVolume(ind)
```


Searching in an Array

- ▶ Function find returns positions of non-zero (logical true) elements of a matrix.
- ► Example: Find the positions of those elements of vector $\mathbf{A} = \begin{bmatrix} \frac{\pi}{2} & \pi & \frac{3}{2}\pi & 2\pi \end{bmatrix}$ fulfilling the condition $\mathbf{A} > \pi$:

- ► Compare the above command with >> A > pi. What is the difference?
- \blacktriangleright To find the first/last k non-zero elements in \mathbf{X} :

```
>> ind = find(X, k, 'first')
>> ind = find(X, k, 'last')
```

► For more details see >> doc find.

Array Searching

▶ Sort vector $\mathbf{v} = \begin{bmatrix} 16 & 2 & 3 & 13 & 5 & 11 & 10 & 8 & 9 & 7 & 6 & 12 & 4 & 14 & 15 & 1 \end{bmatrix}$ in descending order and find the elements of the vector (and their respective positions within the vector) that are divisible by three and at the same time are greater than 10.

= reshape(magic(4)', [1 numel(magic(4))])

To get the vector quickly:

Questions?

A8B17CAS miloslav.capek@fel.cvut.cz

October 21 Winter semester 2024/25

This document has been created as a part of A8B17CAS course.

Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.