
Homework (A8B17CAS)

Problem Set 2

1 Assignment

Problem 2-A Consider matrixK ∈ RN×3, containing {x, y, z} coordinates ofN points. The matrix
is generated as

c = 1:N;
r = 1:3;
K = toeplitz(c, r) - N/2;

where N can be chosen freely.

For a given matrix K, calculate vector n ∈ RN×1 containing 1st norms (called also
Manhattan norm) of all radius vectors pointing from the center of the coordinate
system (x = 0, y = 0, z = 0) to a corresponding point.

x y

z [
−1 1/2 1/2

]

[
0 0 0

]

Figure 1: Considering vector in this picture, the Manhattan norm is equal to 2.

Evaluate the ratio r between the biggest and the smallest value in the vector n.
(Check: for N = 6, we have r = max{n}/min{n} = 3.)

Implement the above-mentioned functionality into a function with the following
header

function [n, r] = problem2A(N)

(1 point)

Problem 2-B Calculate vector d containing distances between all consecutive prime numbers start-
ing from 3 to N = 108 (notice that they are all even numbers). Determine the longest
distance dmax = max{d} and the associated prime numbers, p1 and p2, for which
it occurs. Finally, determine what distance value dmost occurs most often in the
vector d (so-called the mode of a sample d).

Implement the above-mentioned functionality into a function with the following
header

[dmax, p1, p2, dmost] = problem2B(N)

(2 points)

Problem 2-C Implement a function called problem2C, which evaluates Euclidean distances be-
tween two sets of points, finds a sphere with a center at the middle point between
the two most distant points, and calculates its radius. Finally, verify if all points are
inside this sphere.

Imagine two sets of points, pm ∈ P, m ∈ {1, . . . ,M} and rn ∈ R, n ∈ {1, . . . , N}.
Two matrices represent them, P ∈ RM×3 and R ∈ RN×3, serving as the sole inputs

1

https://en.wikipedia.org/wiki/Norm_(mathematics)#Taxicab_norm_or_Manhattan_norm
https://en.wikipedia.org/wiki/Mode_(statistics)

p1

p2 p3

p4

x
y

z

Figure A: An example of point set P = R forming a unitary tetrahedron. The distances between
all m ̸= n points is dmn = 1. The radius of a sphere touching the most distant points is a = 1/2
and its center non-unique, position c = [0 0 0] shown here as red circle.

into the function. The function calculates Euclidean distance (2nd norm) between
each pair of points, taken one by one from the sets P and R, as

dmn = |pm − rn| , D = [dmn] ∈ RM×N . (1)

The distance matrix D is returned as the first output variable. Finally, the function
evaluates the center c of the sphere given as

c =
1

2

(
pmc

+ rnc

)
(2)

with boundary points pmc
and rnc

found such that

mc, nc : a =
1

2
max
m,n

{D} , (3)

i.e., two points with the largest distance between them. Check at the end if all points
from both sets are within this sphere and return allPtsIn = true if the answer
is yes and allPtsIn = false if contrary is the case. To recap, the header of the
function problem2C reads

function [D, a, c, allPtsIn] = problem2C(P, R)

For testing purposes, you may use an equilateral tetrahedron with unitary sides

P = R =




−1/2 0 0
1/2 0 0

0
√
3/2 0

0
√
3/6

√
2/3


 (4)

with the results

D =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 , (5)

a = 1/2, and c = [0 0 0]. Notice that the center point c is, in general, not uniquely
defined here; see Figure C. Any valid solution is therefore accepted.

A hint: Check out the function find(). You may use it with a syntax like

[iRow, iCol] = find(A, 1, 'first'); % the first non-zero entry of A is found

(3 points)

Problem 2-D Create a function called problem2D which can find all Pythagorean triplets up to
the number N and calculates how many of these triplets there are. The header of
the function reads

2

function [R, I] = problem2D(N)

where R is the matrix of Pythagorean triplets, described in details below, I is the
number of triplets found, and N is the input variable described below. The function
should be reasonably fast, i.e., to calculate all triplets up to nI ≤ N = 1000 in terms
of seconds. The output variable R is a matrix R ∈ ZI×4 with the following structure

R =




n1 a1 b1 c1
...

...
...

...
ni ai bi ci
...

...
...

...
nI aI bI cI



, (6)

where
ni = ai + bi + ci. (7)

A Pythagorean triplet is a set of three natural numbers, ai < bi < ci, for which,

c2i = a2i + b2i . (8)

A well-known example of a Pythagorean triplet is a1 = 3, b1 = 4, and c1 = 5 with
n1 = 12. As a sanity check, see the first two correct lines of the output variable R

R =




12 3 4 5
24 6 8 10
...

...
...

...


 . (9)

To illustrate how the variable N is used: in case that N = 15, there is only one
Pythagorean triplet for n1 = 12, see (9), however, forN = 10 there is no Pythagorean
triplet at all. This problem is freely inspired by the Project Euler, Problem 9.

(4 points)

2 Instructions

The deadline for all assignments is

• December 8, 23:59.

Write your solutions into m-files called Problem2{A-D}.m and upload them via the BRUTE
system. In the case of uploading more files, add them to a ZIP archive.

3

https://en.wikipedia.org/wiki/Pythagorean_triple
https://projecteuler.net/problem=9
https://cw.felk.cvut.cz/brute
https://cw.felk.cvut.cz/brute

	Assignment
	Instructions

