

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

A0M33EOA Multi-objective Evolutionary Algorithms

Petr Pošík

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics

Heavilly using slides from Jiří Kubalík, CIIRC CTU, with permission.

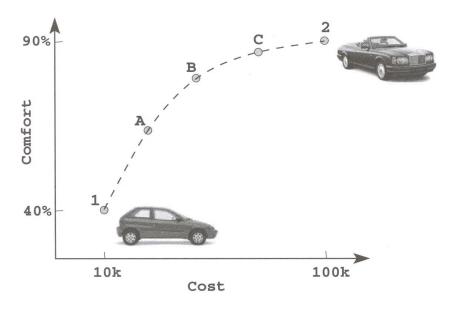
Multi-objective Optimization

Multi-objective Optimization

Many real-world problems involve multiple objectives.

Conflicting objectives

- A solution that is extreme with respect to one objective requires a compromise in other objectives.
- A sacrifice in one objective is related to the gain in other objective(s).
- Illustrative example: Buying a car
 - two extreme hypothetical cars 1 and 2,
 - cars with a trade-off between cost and comfort – A, B, and C.



© Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Which solution out of all of the trade-off solutions is the best with respect to all objectives?

- Without any further information those trade-offs are indistinguishable.
- A number of optimal solutions is sought in multiobjective optimization!

Multi-Objective Optimization: Definition

General form of multi-objective optimization problem

Multi-objective Opt.

• MOO

MOO Definition

• Dec./Obj. Space

• Example: Cantilever

No Conflict

Dominance

• MOO Properties

• MOO Goals

• Weighted Sum

• ε-Constraint

Difficulties

Multi-objective EAs

Performance Measures

Summary

Minimize/maximize $f_m(x)$, m = 1, 2, ..., M; subject to $g_j(x) \ge 0$, j = 1, 2, ..., J; $h_k(x) = 0$, k = 1, 2, ..., K; $x_i^{(L)} \le x_i \le x_i^{(U)}$, i = 1, 2, ..., n.

- \blacksquare x is a vector of n decision variables: $x = (x_1, x_2, ..., x_n)$.
- **Decision space** is constituted by variable bounds that restrict the value of each variable x_i to take a value within a lower $x_i^{(L)}$ and an upper $x_i^{(U)}$ bound.
- Inequality and equality constraints g_i and h_k .
- A solution x that satisfies all constraints and variable bounds is a **feasible solution**, otherwise it is called an **infeasible solution**.
- **Feasible space** is a set of all feasible solutions.
- Objective functions $f(x) = (f_1(x), f_2(x), ..., f_M(x))$ constitute a multi-dimensional **objective space**.

Decision and Objective Space

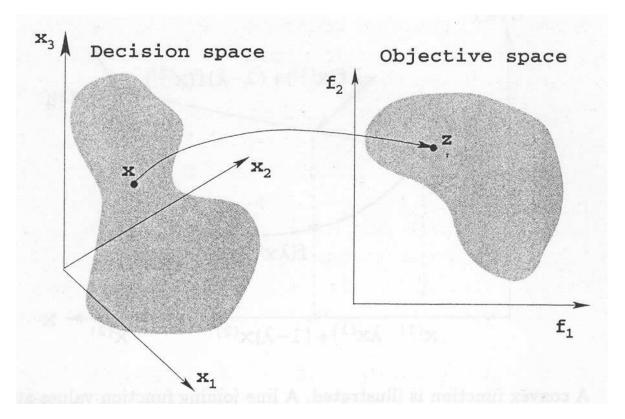
Multi-objective Opt.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary



C Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

For each solution *x* in the decision space, there exists a point in the objective space

$$f(x) = z = (z_1, z_2, ..., z_M)^T$$

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary

Motivation Example: Cantilever Design Problem

Task: design a beam, defined by two decision variables,

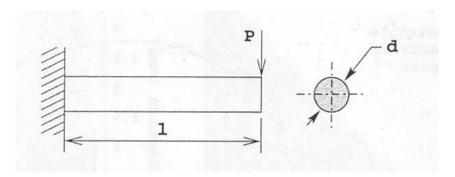
- diameter *d* and
- length *l*,

that can carry an end load *P* and is optimal with respect to *objectives*

- f_1 : cantilever weight (to be minimized),
- \blacksquare f_2 : endpoint deflection (to be minimized),

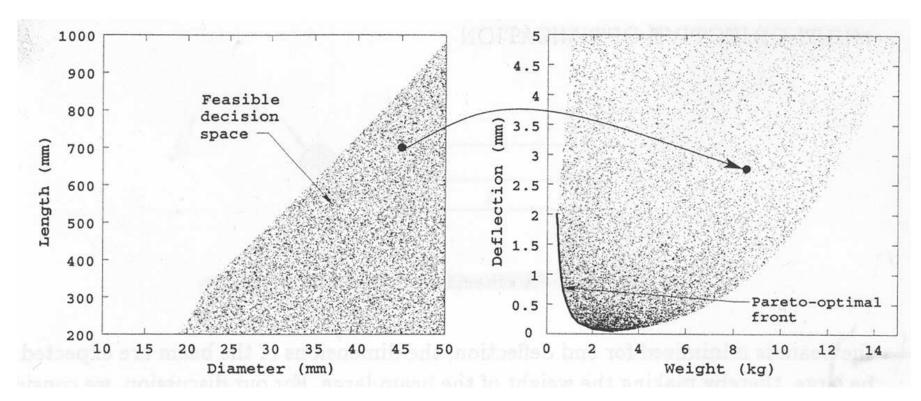
subject to the *constraints* that

- the developed maximum stress σ_{max} is less than the allowable stress S,
- the end deflection δ is smaller than a specified limit δ_{max} .



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Cantilever Design Problem: Decision and Objective Space



© Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary

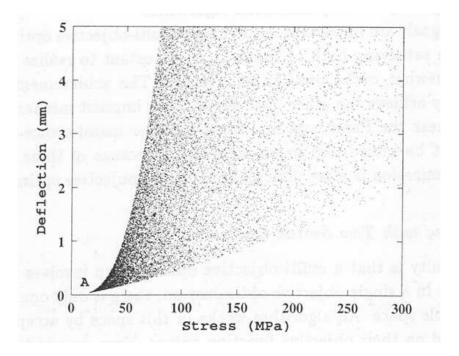
Non-Conflicting Objectives

Existence of multiple trade-off solutions:

- Only if the objectives are in conflict with each other.
- If this does not hold then the cardinality of the Pareto-optimal set is one. (The optimum solutions w.r.t. individual objectives are the same.)

Example: Cantilever beam design problem:

- f_1 : the end deflection δ (to be minimized),
- f_2 : the maximum developed stress in the beam σ_{max} (to be minimized).



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Dominance and Pareto-Optimal Solutions

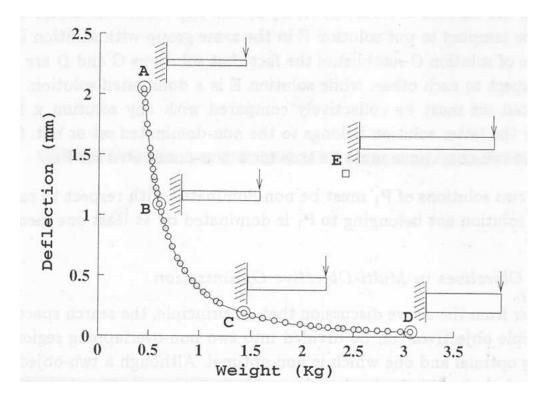
Multi-objective Opt.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Domination: A solution $x^{(1)}$ is said to dominate another solution $x^{(2)}$, $x^{(1)} \leq x^{(2)}$, if $x^{(1)}$ is not worse than $x^{(2)}$ in all objectives and $x^{(1)}$ is strictly better than $x^{(2)}$ in at least one objective.

Solutions A, B, C, D are *non-dominated* solutions (Pareto-optimal solutions)

Solution E is *dominated* by C and B (E is non-optimal).

Properties of Dominance-Based Multi-Objective Optimization

Non-dominated set: Among a set of solutions P, the non-dominated set of solutions P' are those that are not dominated by any member of the set P.

Multi-objective Opt.

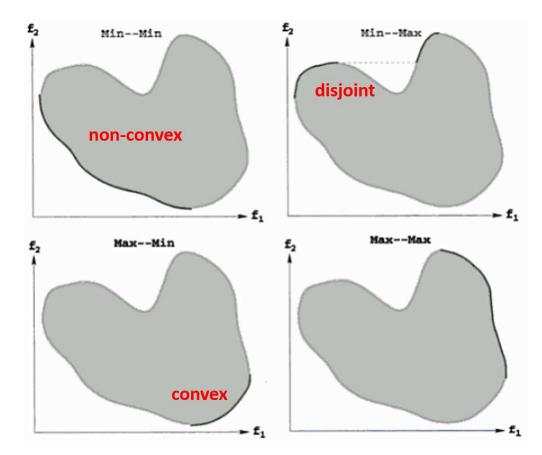
- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary

Globally Pareto-optimal set is the non-dominated set of the entire feasible space.



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary

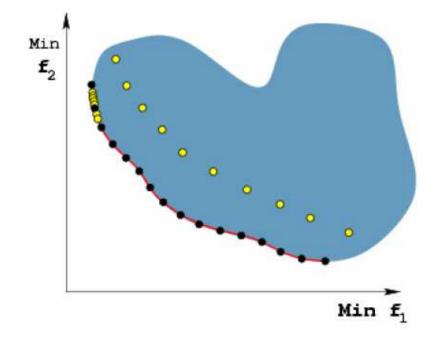
Goals of Dominance-Based Multi-Objective Optimization

Every finite set of solutions *P* can be divided into two non-overlapping sets:

- **non-dominated set** P_1 : contains all solutions that do not dominate each other
- **dominated** set P_2 : any solution from P_2 is dominated by at least one solution from P_1

In the absence of other factors (e.g. preference for certain objectives, or for a particular region of the tradeoff surface) there are **two goals of multi-objective optimization**:

- Quality: Find a set of solutions as close as possible to the Pareto-optimal front.
- **Spread:** Find a set of non-dominated solutions as diverse as possible.



Classical Approaches: Weighted Sum Method

Construct a weighted sum of objectives and optimize

$$F(x) = \sum_{i=1}^{m} w_i \cdot f_i(x).$$

- User supplies weight vector *w*.
- Selection of weights *w* defines the slope of the line, which in turn determines the particular solution(s) on the boundary of the feasible space.

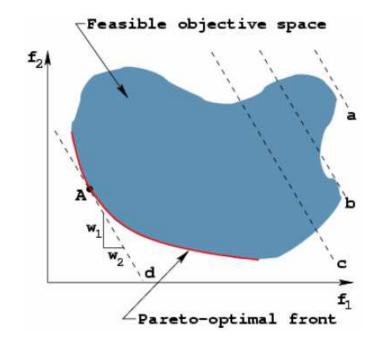
Multi-objective Opt.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary



- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

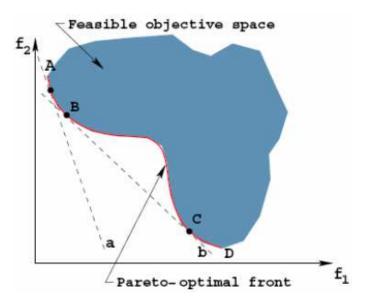
Multi-objective EAs

Performance Measures

Summary

Difficulties with Weighted Sum Method

- Need to know weight vector *w*.
- To find a set of trade-off solutions, the method must be run many times with varying w.
- Non-uniformity in Pareto-optimal solutions.
- Inability to find some Pareto-optimal solutions (in non-convex region).
- However, a solution of this approach is always Pareto-optimal.



Classical Approaches: ε -Constraint Method

Method: Minimize a primary objective while expressing all the other objectives in the form of inequality constraints

Multi-objective Opt.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

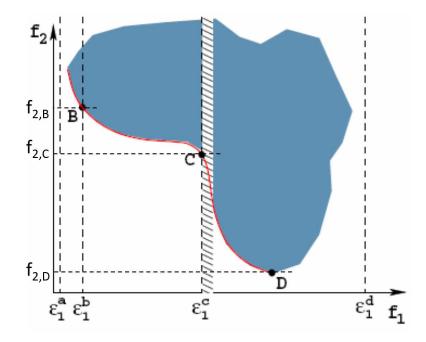
Summary

minimize
$$f_p(x)$$

subject to $f_i(x) \le \varepsilon_i$, for $i = 1, ..., m, i \ne p$.

Example:

minimize
$$f_2(x)$$
 subject to $f_1(x) \le \varepsilon_1$.



Remarks:

- To find a whole set of trade-off solutions, the method must be run many times.
- Need to know relevant ε vectors to ensure a feasible solution.
- Non-uniformity in Pareto-optimal solutions.
- However, any Pareto-optimal solution can be found with this method.

- MOO
- MOO Definition
- Dec./Obj. Space
- Example: Cantilever
- No Conflict
- Dominance
- MOO Properties
- MOO Goals
- Weighted Sum
- ε-Constraint
- Difficulties

Multi-objective EAs

Performance Measures

Summary

Difficulties with Most Classical Approaches

- Need to run a single-objective optimizer many times.
- A lot of problem knowledge is required.
- Even then, good distribution of solutions is not guaranteed.
- Multi-objective optimization as an application of single-objective optimization.

Multi-objective EAs

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

Why and How Use EAs for Multi-Objective Optimization?

Why?

- Population approach suits well to find multiple solutions.
- *Niche-preservation methods* can be exploited to find diverse solutions.
- Implicit parallelism helps provide a parallel search.
 Multiple applications of classical methods do not constitute a parallel search.

How?

- Modify the fitness computation.
- Emphasize non-dominated solutions for *convergence*.
- Emphasize unique solutions for *diversity*.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

Multi-Objective Evolutionary Algorithms

Multiple Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization, In Genetic Algorithms: Proceedings of the Fifth International Conference, 1993

Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn, Nicholas Nafpliotis, David E. Goldberg: A Niched Pareto Genetic Algorithm for Multiobjective Optimization, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1994

NSGA

Srinivas, N., and Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms, Evolutionary Computation Journal 2(3), pp. 221-248, 1994

NSGA-II

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In Proceedings of the Parallel Problem Solving from Nature VI Conference, 2000

■ Pareto Archived Evolution Strategy (PAES)

Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2), pp. 149-172, 2000

SPEA2

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization, In: Evolutionary Methods for Design, Optimisation, and Control, Barcelona, Spain, pp. 19-26, 2002

. . .

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

Non-Dominated Sorting Genetic Algorithm (NSGA)

Common features with the standard GA:

- variation operators crossover and mutation,
- selection method Stochastic Reminder Roulette-Wheel,
- standard generational evolutionary model.

Differences of NSGA from SGA:

- fitness assignment scheme which prefers non-dominated solutions, and
- fitness sharing strategy which preserves diversity among solutions of each non-dominated front.

NSGA steps:

- 1. Initialize population of solutions.
- 2. Repeat
 - Calculate objective values and assign fitness values.
 - Generate new population.

Until stopping condition is fulfilled.

Multi-objective EAs

• MOEAs: Why?

MOEAs

• NSGA

Fitness Sharing

• FS: Example

• NSGA: Fitness

• NSGA: Conclusions

• NSGA-II

• NSGA-II: Diversity

• NSGA-II Steps

• NSGA vs NSGA-II

• Simulation results

• Constraints

• NSGA-II Sym. Reg.

• SPEA2

• SPEA2 Steps

• SPEA2 Fitness

• SPEA2 Diversity

• SPEA2 Replacement

• SPEA2: Conclusions

Performance Measures

Summary

Fitness Sharing

Diversity preservation method originally proposed for solving multi-modal optimization problems so that GA is able to discover and evenly sample all optima.

Idea: decrease fitness of similar solutions

Algorithm to calculate the shared fitness value of i-th individual in population of size N

- 1. Calculate the distances d_{ij} of individual i to all individuals j.
- 2. Calculate values of *sharing function* between individual *i* and all individuals *j*:

$$Sh(d_{ij}) = \begin{cases} 1 - \left(\frac{d_{ij}}{\sigma_{share}}\right)^{\alpha}, & \text{if } d_{ij} \leq \sigma_{share}, \\ 0, & \text{otherwise.} \end{cases}$$

3. Calculate *niche count nc_i* of individual *i*:

$$nc_i = \sum_{i=1}^N Sh(d_{ij})$$

4. Calculate *shared fitness* of individual *i*:

$$f_i' = f_i/nc_i$$

Remark: If d = 0, then Sh(d) = 1, meaning that two solutions are identical. If $d \ge \sigma_{share}$, then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

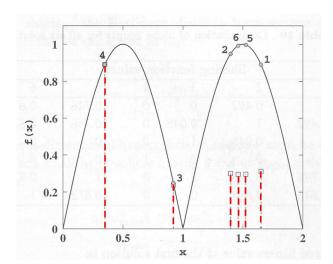
Summary

Fitness Sharing: Example

Bimodal function, six solutions, and corresponding shared fitness values.

$$\sigma_{share} = 0.5, \alpha = 1.$$

Sol.	String	Decoded value	x ⁽ⁱ⁾	fi	nci	f _i '
1	110100	52	1.651	0.890	2.856	0.312
2	101100	44	1.397	0.948	3.160	0.300
3	011101	29	0.921	0.246	1.048	0.235
4	001011	11	0.349	0.890	1.000	0.890
5	110000	48	1.524	0.997	3.364	0.296
6	101110	46	1.460	0.992	3.364	0.295



© Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Let's take the first solution:

$$d_{11} = 0.0, d_{12} = 0.254, d_{13} = 0.731, d_{14} = 1.302, d_{15} = 0.127, d_{16} = 0.191$$

Sh
$$(d_{11}) = 1$$
, $Sh(d_{12}) = 0.492$, $Sh(d_{13}) = 0$, $Sh(d_{14}) = 0$, $Sh(d_{15}) = 0.746$, $Sh(d_{16}) = 0.618$.

$$nc_1 = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856$$

$$f'(1) = f(1)/nc_1 = 0.890/2.856 = 0.312$$

Remark:

- The above example computes d_{ij} in decision space, $d_{ij} = d(x_i x_j)$.
- To create diverse set of non-dominated solutions, we have to compute it in the objective space, e.g., $d_{ij} = d(f(x_i) f(x_j)) = d(z_i z_j)$ (or see next slide).

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

NSGA: Fitness Assignment

Input: Set *P* of solutions with assigned objective values. **Output**: Set of solutions with assigned fitness values (the bigger the better).

- 1. Choose sharing parameter σ_{share} , small positive number ϵ , initialize $f_{max} = PopSize$ and front counter front = 1
- 2. Find set $P' \subset P$ of non-dominated solutions.
- 3. For each $q \in P'$,
 - assign fitness $f(q) = f_{max}$,
 - calculate sharing function with all solutions in P', niche count nc_q among solutions of P' only, the normalized Euclidean distance d_{ij} is calculated as

$$d_{ij} = \sqrt{\sum_{m=1}^{M} \left(\frac{f_m^{(i)} - f_m^{(j)}}{f_m^{\text{max}} - f_m^{\text{min}}} \right)^2},$$

- calculate shared fitness $f'(q) = f(q)/nc_q$.
- 4. $f_{max} = min(f'(q) : q \in P') \epsilon$, $P = P \setminus P'$, front = front + 1.
- 5. If not all solutions are assessed go to step 2, otherwise stop.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

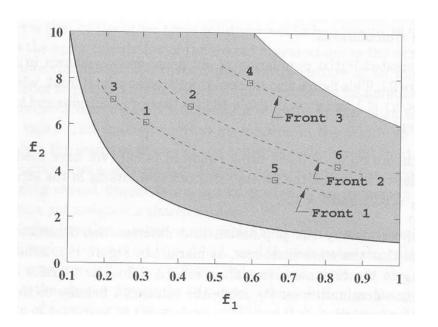
Performance Measures

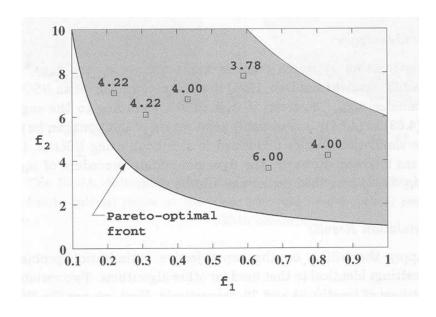
Summary

NSGA: Fitness Assignment (cont.)

Example:

- First, 6 solutions are classified into different non-dominated fronts.
- Then, the fitness values are calculated according to the fitness sharing method.
 - The sharing function method is used front-wise.
 - Within a front, less dense solutions have better fitness values.





© Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

NSGA: Conclusions

Computational complexity

- Governed by the non-dominated sorting procedure and the sharing function implementation.
 - **non-dominated sorting** complexity of $O(MN^3)$.
 - **sharing function** requires every solution in a front to be compared with every other solution in the same front, total of $\sum_{j=1}^{\rho} |P_j|^2$, where ρ is a number of fronts. Each distance computation requires evaluation of n differences between parameter values.
 - In the worst case, when $\rho = 1$, the overall complexity is of $O(nN^2)$.

Advantages:

- Assignment of fitness according to non-dominated sets makes the algorithm converge towards the Pareto-optimal region.
- Sharing allows phenotypically diverse solutions to emerge.

Disadvantages:

- non-elitist
- lacksquare sensitive to the sharing method parameter σ_{share}
 - requires some guidelines for setting the σ_{share}
 - e.g., $\sigma_{share} = \frac{0.5}{\sqrt[n]{q}}$ based on the expected number of optima q

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

NSGA-II

Fast non-dominated sorting approach

Computational complexity is $O(MN^2)$.

Diversity preservation

- The sharing function method is replaced with a **crowded comparison approach**.
- Parameterless approach.

Elitist evolutionary model

Only the best solutions survive to subsequent generations.

NSGA-II: Diversity preservation

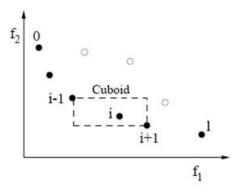
Density estimation: crowding distance estimates how much unique the solution is.

- For individual i, find its predecessor $f_m^{(i-1)}$ and successor $f_m^{(i+1)}$ in each objective f_m .
- Crowding distance i^{distance} is the sum of normalized differences of predecessor and successor across all objectives:

$$i^{distance} = \sum_{m=1}^{M} \frac{\|f_{m}^{(i+1)} - f_{m}^{(i-1)}\|}{f_{m}^{\max} - f_{m}^{\min}},$$

where $f_m^{\text{max}} - f_m^{\text{min}}$ is the range of the m-th objective values w.r.t the whole population.

For individuals with extreme value of at least one objective, $i^{distance} = \infty$.



© Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Crowded comparison operator \prec_c :

- Every solution in the population has two attributes:
 - 1. non-domination rank i^{rank} , and
 - 2. crowding distance *i*^{distance}
- A partial order \prec_c is defined as:

$$i \prec_c j$$
 if $i^{rank} < j^{rank}$ or $(i^{rank} = j^{rank})$ and $i^{distance} > j^{distance}$.

Multi-objective EAs

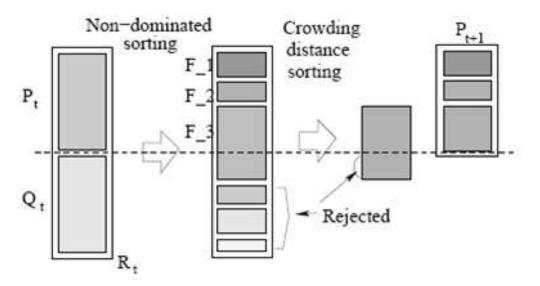
- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

NSGA-II: Evolutionary Model

- 1. Sort the current population P_t based on the non-domination. Each solution is assigned a fitness equal to its non-domination level (1 is the best).
- 2. Apply the usual binary tournament selection, recombination, and mutation to create a child population Q_t of size N.
- 3. Combine both populations: $R_t = P_t \cup Q_t$. (Steady-state algorithm, elitism is ensured.)
- 4. Perform replacement (environmental selection): Population P_{t+1} is formed according to the following schema



© Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Simulation Results: NSGA vs. NSGA-II

Comparison of NSGA nad NSGA-II on bi-objective 0/1 Knapsack Problem with 750 items.

NSGA-II outperforms NSGA with respect to both performance measures.

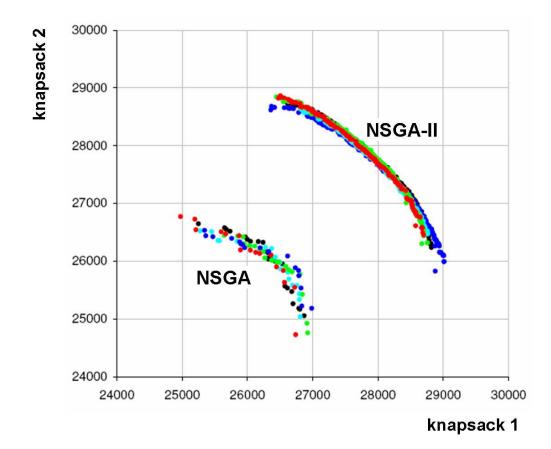
Multi-objective Opt.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

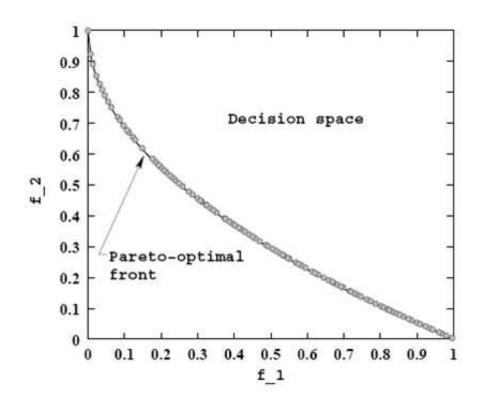
Summary

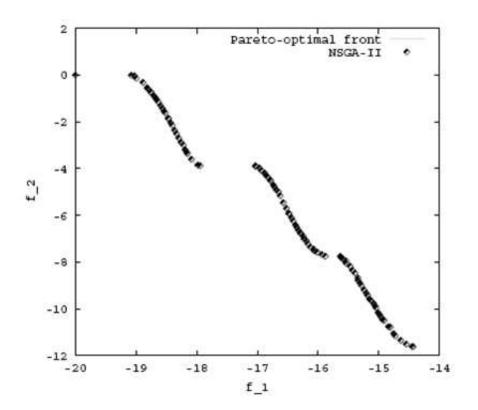


NSGA-II: Simulation Results on Various Types of Problems

Problem with continuous Pareto-optimal front

Problem with discontinuous Pareto-optimal front





© Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

NSGA-II: Constraint Handling Approach

Binary tournament selection with modified domination concept is used to choose the better solution out of the two solutions i and j, randomly picked up from the population.

In the presence of constraints, each solution in the population can be either **feasible** or **infeasible**, so that there are the following three possible situations:

- 1. both solutions are feasible,
- 2. one is feasible and other is not,
- both are infeasible.

Constrained-domination: A solution i is said to constrained-dominate a solution j, if any of the following conditions is true:

- 1. Solutions *i* and *j* are feasible, and solution *i* dominates solution *j*.
- 2. Solution i is feasible and solution j is not.
- 3. Solutions *i* and *j* are both infeasible, but solution *i* has a smaller overall constraint violation.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

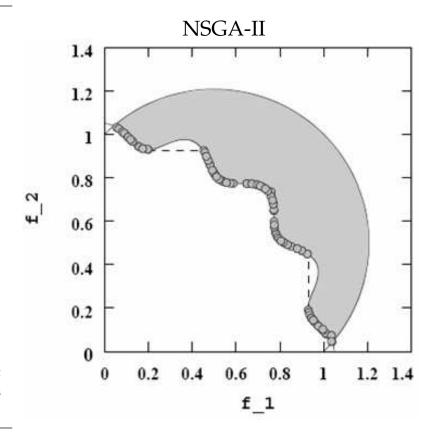
Performance Measures

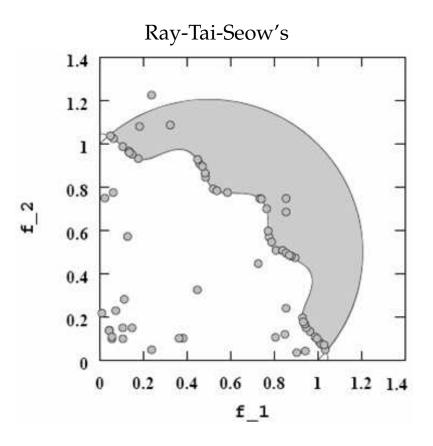
Summary

NSGA-II: Simulation Results (cont.)

Comparison of NSGA-II and Ray-Tai-Seow's Constraint handling approach

Ray, T., Tai, K. and Seow, K.C. "Multiobjective Design Optimization by an Evolutionary Algorithm", Engineering Optimization, Vol.33, No.4, pp. 399-424, 2001.

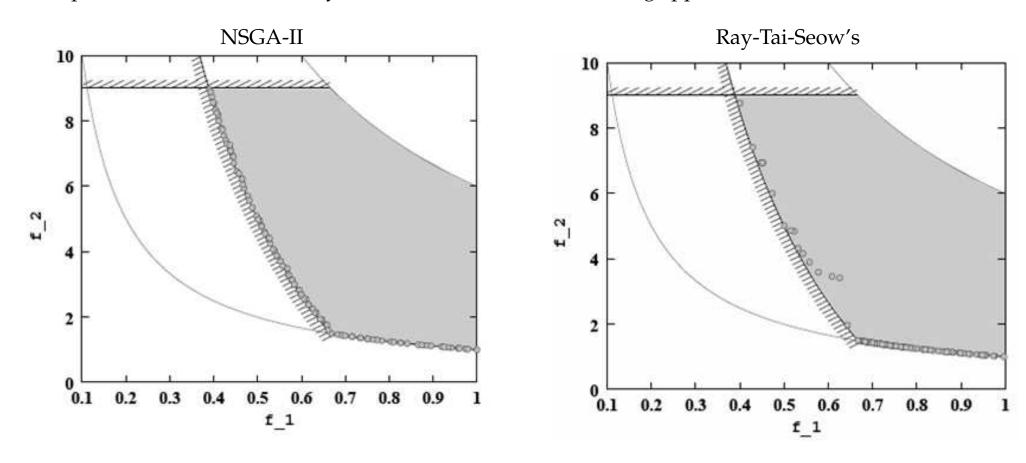




©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.

NSGA-II: Simulation Results (cont.)

Comparison of NSGA-II and Ray-Tai-Seow's's Constraint handling approach:



© Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

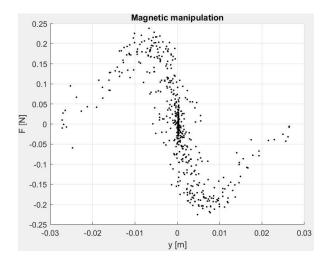
Performance Measures

Summary

NSGA-II: Bi-objective Symbolic Regression

Optimization objectives:

- Minimize MSE on the training data set.
- Minimize deviation of the symbolic models from the desired properties.

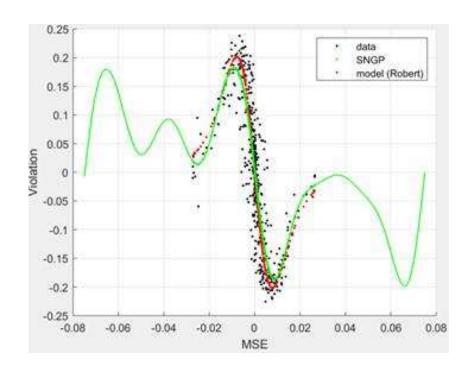


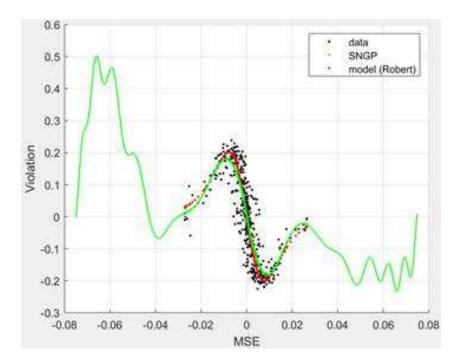
Desired properties:

- Monotonically increasing in the intervals $y = \langle -0.075, -0.01 \rangle$ and $y = \langle 0.01, 0.075 \rangle$
- Monotonically decreasing in the interval $y = \langle -0.007, 0.007 \rangle$
- $F(y) \ge 0$, for $y \in \langle -0.075, 0.0 \rangle$
- $F(y) \le 0$, for $y \in (0.0, 0.075)$
- |F(0.0)| < 0.005
- |F(-0.075) 0.001| < 0.0005
- |F(0.075) + 0.001| < 0.0005

NSGA-II: Bi-objective Symbolic Regression

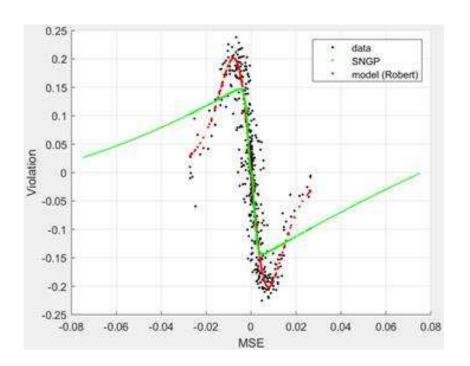
Well-fit models *w.r.t.* the MSE on training data only:

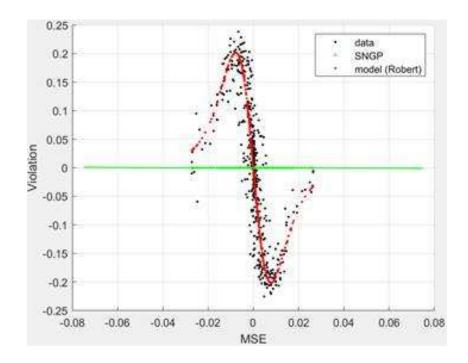




NSGA-II: Bi-objective Symbolic Regression

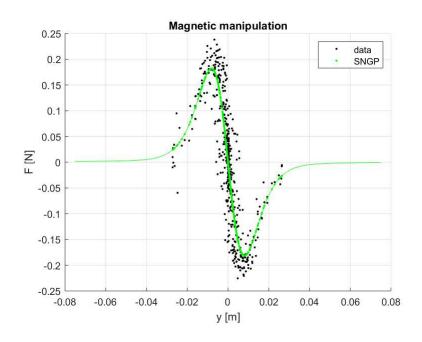
Well-fit models *w.r.t.* the constraint violations:

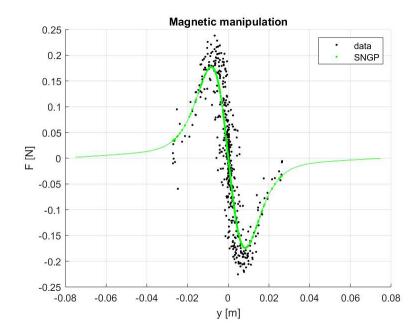




NSGA-II: Bi-objective Symbolic Regression

Models with small MSE on training data that fully comply with the constraints:

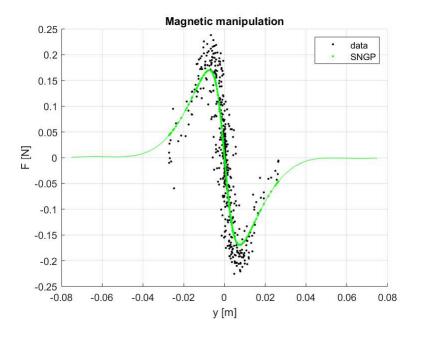




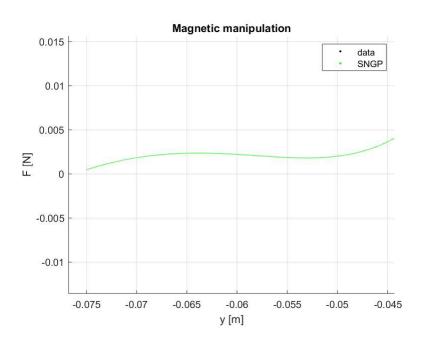
NSGA-II: Bi-objective Symbolic Regression

Models with small MSE on training data that almost fully comply with the constraints:

The whole model



Detail of left tail



Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 maintains two sets of solutions:

- **regular population** of newly generated solutions, and
- **archive**, which contains a representation of the nondominated front among all solutions considered so far.

Archive:

- The archive size is fixed, i.e., whenever the number of nondominated individuals is less than the predefined archive size, the archive is filled up by *good* dominated individuals.
- A truncation method is invoked when the nondominated front exceeds the archive limit.
- A member of the archive is only removed if
 - 1. a solution has been found that dominates it, or
 - 2. the maximum archive size is exceeded and the portion of the front where the archive member is located is overcrowded.
- The archive makes it possible not to lose certain portions of the current nondominated front due to random effects.
- All individuals in the archive participate in selection.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

SPEA2: Algorithm

Input: N is the population size, \overline{N} is the archive size.

- 1. **Initialization**: Generate an initial population P_0 and create the empty archive $\overline{P}_0 = \emptyset$. Set t = 0.
- 2. **Fitness assignment**: Calculate fitness of individuals in P_t and \overline{P}_t .
- 3. **Environmental selection**: Copy all nondominated individuals in P_t and \overline{P}_t to \overline{P}_{t+1} .
 - If size of \overline{P}_{t+1} exceeds \overline{N} then reduce \overline{P}_{t+1} using the truncation operator.
 - If size of \overline{P}_{t+1} is less than \overline{N} then fill \overline{P}_{t+1} with dominated solutions in P_t and \overline{P}_t .
- 4. **Termination**: If $t \geq T$ then return nondominated solutions in \overline{P}_{t+1} . Stop.
- 5. **Mating selection**: Perform binary tournament selection with replacement on \overline{P}_{t+1} in order to fill the mating pool.
- 6. **Variation**: Apply recombination and mutation operators to the mating pool and fill P_{t+1} with the generated solutions.
- 7. Increment generation counter t = t + 1.
- 8. Go to Step 2.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

SPEA2: Fitness Assignment

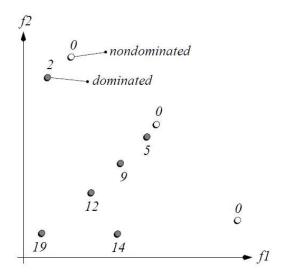
Fitness assignment (fitness should be minimized):

- For each individual, both dominating and dominated solutions are taken into account.
- Each individual i in the archive \overline{P}_t and in the population P_t is assigned a **strength value** S(i), representing the number of solutions it dominates.
- The raw fitness R(i) of an individual i is calculated as

$$R(i) = \sum_{j \in P_t + \overline{P}_t, j \succ i} S(j),$$

i.e., R(i) is determined by the strengths of its dominators in both archive and population. R(i) = 0 corresponds to a nondominated solution.

Since the **raw fitness assignment** is based on the concept of Pareto dominance, it **may fail when most individuals do not dominate each other**.



Both objectives should be maximized.

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

SPEA2: Density Estimation

Density information is incorporated to discriminate between individuals having identical raw fitness values.

The density at any point is estimated as a (decreasing) function of the distance to the *k*-th nearest data point – calculated as the inverse of the distance to the *k*-th nearest neighbor.

- k equal to the square root of the sample size is used: $k = \sqrt{N + \overline{N}}$.
- **Density** D(i) is calculated as

$$D(i) = \frac{1}{\sigma_i^k + 2}$$

where σ_i^k is the distance to the *k*-th nearest neighbor and it is made sure that D(i) < 1.

Final fitness is given as

$$F(i) = R(i) + D(i).$$

Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

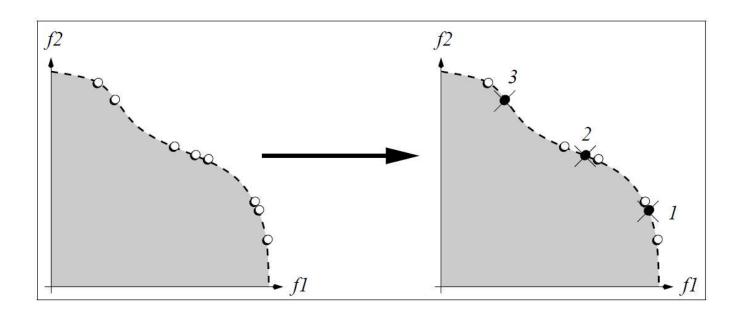
Summary

SPEA2: Environmental Selection

After copying all nondominated individuals from archive and population to the archive of the next generation,

- if the archive is too small (i.e. $|\overline{P}_{t+1} < \overline{N}|$), the best $\overline{N} |\overline{P}_{t+1}|$ dominated solutions (w.r.t. fitness) in the previous archive and population are copied to the new archive;
- if the archive is too large (i.e. $|\overline{P}_{t+1} > \overline{N}|$), individuals from \overline{P}_{t+1} are iteratively removed until $|\overline{P}_{t+1}| = \overline{N}$.

At each iteration, the individual which has the minimum distance to another individual is chosen (a tie is broken by considering the second smallest distances and so forth).



Multi-objective EAs

- MOEAs: Why?
- MOEAs
- NSGA
- Fitness Sharing
- FS: Example
- NSGA: Fitness
- NSGA: Conclusions
- NSGA-II
- NSGA-II: Diversity
- NSGA-II Steps
- NSGA vs NSGA-II
- Simulation results
- Constraints
- NSGA-II Sym. Reg.
- SPEA2
- SPEA2 Steps
- SPEA2 Fitness
- SPEA2 Diversity
- SPEA2 Replacement
- SPEA2: Conclusions

Performance Measures

Summary

SPEA2: Conclusions

SPEA2

- uses the concept of Pareto dominance in order to assign scalar fitness values to individuals;
- uses a fine-grained fitness assignment strategy which incorporates density information in order to distinguish between solutions that are indifferent, i.e., do not dominate each other;
- uses environmental selection in order to keep the optimal diversity in the archive;
- seems to have advantages over NSGA-II in higher dimensional objective spaces.

Measuring MO Performance

Multi-objective EAs

Performance Measures

- MOEA Performance
- S Metric
- C Metric

Summary

MOEA Performance Measures

The result of a MOEA run is not a single scalar value, but a collection of vectors forming a non-dominated set.

- Comparing two MOEA algorithms requires comparing the non-dominated sets they produce.
- However, there is no straightforward way to compare different non-dominated sets.

Three goals that can be identified and measured:

- The distance of the resulting non-dominated front to the Pareto front should be minimized.
- 2. A good (in most cases uniform) distribution of the solutions found is desirable.
- 3. The extent of the obtained non-dominated front should be maximized, i.e., for each objective, a wide range of values should be present.

Multi-objective EAs

Performance Measures

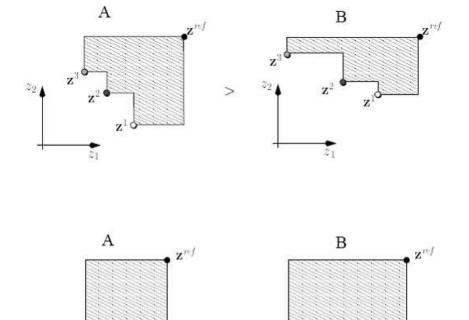
- MOEA Performance
- *S* Metric
- C Metric

Summary

S Metric

Size of the space covered S(X): it calculates the *hypervolume* of the multi-dimensional region enclosed by a set A and a *reference point* Z^{ref} . The hypervolume expresses the size of the region that is dominated by A.

So, the bigger the value of this measure the better the quality of *A* is, and vice versa.



© Knowles J. and Corne D.: On Metrics for Comparing Non-Dominated Sets.

Multi-objective EAs

Performance Measures

- MOEA Performance
- *S* Metric
- C Metric

Summary

S Metric (cont.)

Pros:

- Given two non-dominated sets, *A* and *B*, if each point in *B* is dominated by a point in *A* then *A* will always be evaluated as being better than *B*.
- Independence: the hypervolume calculated for the given set is not dependent on any other, or any reference set.
- Differentiates between different degrees of complete outperformance of two sets.
- Intuitive meaning/interpretation.

Cons:

- Requires defining some upper boundary of the region.
 This choice does affect the ordering of non-dominated sets.
- It has a large computational overhead, $O(n^{k+1})$, where n is the number of nondominated solutions and k is the number of objectives, rendering it unusable for many objectives or large sets.
- It multiplies apples by oranges, i.e., different objectives together.

Multi-objective EAs

Performance Measures

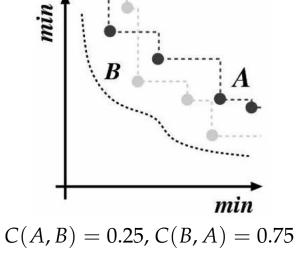
- MOEA Performance
- S Metric
- C Metric

Summary

C Metric

Coverage of two sets C(X, Y): given two sets of non-dominated solutions X and Y found by the compared algorithms, the measure C(X, Y) returns a ratio of a number of solutions of Y that are dominated by or equal to any solution of X to the whole set Y.

- It returns values from the interval [0, 1].
- The value C(X, Y) = 1 means that all solutions in Y are covered by solutions of the set X. And vice versa, the value C(X, Y) = 0 means that none of the solutions in Y are covered by the set X.
- Always both orderings have to be considered, since C(X, Y) is not necessarily equal to 1 C(Y, X).



Properties:

- It has low computational overhead.
- If two sets are of different cardinality and/or the distributions of the sets are non-uniform, then it gives unreliable results.

Multi-objective EAs

Performance Measures

- MOEA Performance
- S Metric
- C Metric

Summary

C Metric (cont.)

Properties:

- Any pair of C metric scores for a pair of sets A and B in which neither C(A, B) = 1 nor C(B, A) = 1, indicates that the two sets are incomparable according to the weak outperformance relation.
- It is cycleinducing if three sets are compared using *C*, they may not be ordered.

Example:

- C(A,B) = 0, C(B,A) = 3/4
- C(B,C) = 0, C(C,B) = 1/2
- C(A,C) = 1/2, C(C,A) = 0

B considered better than *A*, *A* better than *C*, but *C* better than *B*.



© Knowles J. and Corne D.: On Metrics for Comparing

Non-Dominated Sets.

Summary

Multi-objective EAs

Performance Measures

Summary

- Learning outcomes
- Reading

Learning outcomes

After this lecture, a student shall be able to

- define a multi-objective optimization problem and describe the relationship between decision and objective spaces;
- define the dominance principle and the Pareto-optimal solutions;
- identify non-dominated solutions in a set of solutions;
- list and describe two goals of multi-objective optimization;
- describe some non-evolutionary approaches to multi-objective optimizatin and explain their deficiencies;
- implement evolutionary multi-objective algorithms and explain their differences from ordinary EA;
- explain algorithms NSGA, NSGA-II, SPEA2 and their differences;
- implement constraint handling in NSGA-II;
- define performance measures used in multi-objective optimizations (S metric and C metric);

Multi-objective EAs

Performance Measures

Summary

- Learning outcomes
- Reading

Reading

- Kalyanmoy Deb: Multi-objective optimization using evolutionary algorithms. Wiley, 2001.
- Kalyanmoy Deb et al.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197, 2000.
- Eckart Zitzler et al.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. ETH Zurich, 2001.
- Eckart Zitzler:
 Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.
 ETH Zurich, 1999.
- Joshua Knowles and David Corne: On Metrics for Comparing Non-Dominated Sets. IEEE Congress on Evolutionary Computation, 2002.