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Many real-world problems involve multiple objectives.

■ Conflicting objectives

■ A solution that is extreme with respect
to one objective requires a compromise
in other objectives.

■ A sacrifice in one objective is related to
the gain in other objective(s).

■ Illustrative example: Buying a car

■ two extreme hypothetical cars 1 and 2,

■ cars with a trade-off between cost and
comfort – A, B, and C.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary

Algorithms.

Which solution out of all of the trade-off solutions is the best with respect to all objectives?

■ Without any further information those trade-offs are indistinguishable.

■ A number of optimal solutions is sought in multiobjective optimization!
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General form of multi-objective optimization problem

Minimize/maximize fm(x), m = 1, 2, ..., M;
subject to gj(x) ≥ 0, j = 1, 2, ..., J;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., n.

■ x is a vector of n decision variables: x = (x1, x2, ..., xn).

■ Decision space is constituted by variable bounds that restrict the value of each

variable xi to take a value within a lower x
(L)
i and an upper x

(U)
i bound.

■ Inequality and equality constraints gj and hk .

■ A solution x that satisfies all constraints and variable bounds is a feasible solution,
otherwise it is called an infeasible solution.

■ Feasible space is a set of all feasible solutions.

■ Objective functions f (x) = ( f1(x), f2(x), ..., fM(x)) constitute a multi-dimensional
objective space.
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P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 5 / 52
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■ For each solution x in the decision space, there exists a point in the objective space

f (x) = z = (z1, z2, ..., zM)T
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Task: design a beam, defined by two decision variables,

■ diameter d and

■ length l,

that can carry an end load P and is optimal with respect to objectives

■ f1: cantilever weight (to be minimized),

■ f2: endpoint deflection (to be minimized),

subject to the constraints that

■ the developed maximum stress σmax is less than the allowable stress S,

■ the end deflection δ is smaller than a specified limit δmax .

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.



Cantilever Design Problem: Decision and Objective Space
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Existence of multiple trade-off solutions:

■ Only if the objectives are in conflict with each other.

■ If this does not hold then the cardinality of the Pareto-optimal set is one. (The
optimum solutions w.r.t. individual objectives are the same.)

Example: Cantilever beam design problem:

■ f1: the end deflection δ (to be minimized),

■ f2: the maximum developed stress in the beam σmax (to be minimized).

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Domination: A solution x(1) is said to dominate another solution x(2), x(1) � x(2), if x(1) is
not worse than x(2) in all objectives and x(1) is strictly better than x(2) in at least one
objective.

Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions)

Solution E is dominated by C and B (E is non-optimal).
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Non-dominated set: Among a set of solutions P, the non-dominated set of solutions P′

are those that are not dominated by any member of the set P.

Globally Pareto-optimal set is the non-dominated set of the entire feasible space.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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Every finite set of solutions P can be divided into two non-overlapping sets:

■ non-dominated set P1: contains all solutions that do not dominate each other

■ dominated set P2: any solution from P2 is dominated by at least one solution from P1

In the absence of other factors (e.g.
preference for certain objectives, or for a
particular region of the tradeoff surface)
there are two goals of multi-objective
optimization:

■ Quality: Find a set of solutions as
close as possible to the
Pareto-optimal front.

■ Spread: Find a set of non-dominated
solutions as diverse as possible.
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■ Construct a weighted sum of objectives and optimize

F(x) =
m

∑
i=1

wi · fi(x).

■ User supplies weight vector w.

■ Selection of weights w defines the slope of the line, which in turn determines the
particular solution(s) on the boundary of the feasible space.
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■ Need to know weight vector w.

■ To find a set of trade-off solutions, the method must be run many times with varying
w.

■ Non-uniformity in Pareto-optimal solutions.

■ Inability to find some Pareto-optimal solutions (in non-convex region).

■ However, a solution of this approach is always Pareto-optimal.
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Method: Minimize a primary objective while expressing all the other objectives in the
form of inequality constraints

minimize fp(x)

subject to fi(x) ≤ εi , for i = 1, . . . , m, i 6= p.

Example:

minimize f2(x)

subject to f1(x) ≤ ε1.

Remarks:

■ To find a whole set of trade-off solutions, the method must be run many times.

■ Need to know relevant ε vectors to ensure a feasible solution.

■ Non-uniformity in Pareto-optimal solutions.

■ However, any Pareto-optimal solution can be found with this method.
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P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 52

■ Need to run a single-objective optimizer many times.

■ A lot of problem knowledge is required.

■ Even then, good distribution of solutions is not guaranteed.

■ Multi-objective optimization as an application of single-objective optimization.



Multi-objective EAs
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Why?

■ Population approach suits well to find multiple solutions.

■ Niche-preservation methods can be exploited to find diverse solutions.

■ Implicit parallelism helps provide a parallel search.
Multiple applications of classical methods do not constitute a parallel search.

How?

■ Modify the fitness computation.

■ Emphasize non-dominated solutions for convergence.

■ Emphasize unique solutions for diversity.
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■ Multiple Objective Genetic Algorithm (MOGA)
Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization: Formulation,

Discussion and Generalization, In Genetic Algorithms: Proceedings of the Fifth International Conference, 1993

■ Niched-Pareto Genetic Algorithm (NPGA)
Jeffrey Horn, Nicholas Nafpliotis, David E. Goldberg: A Niched Pareto Genetic Algorithm for Multiobjective

Optimization, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on

Computational Intelligence, 1994

■ NSGA
Srinivas, N., and Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms,

Evolutionary Computation Journal 2(3), pp. 221-248, 1994

■ NSGA-II
Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan: A Fast Elitist Non-Dominated Sorting Genetic

Algorithm for Multi-Objective Optimization: NSGA-II, In Proceedings of the Parallel Problem Solving from

Nature VI Conference, 2000

■ Pareto Archived Evolution Strategy (PAES)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy.

Evolutionary Computation, 8(2), pp. 149-172, 2000

■ SPEA2
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm For

Multiobjective Optimization, In: Evolutionary Methods for Design, Optimisation, and Control, Barcelona, Spain,

pp. 19-26, 2002

■ . . .
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Common features with the standard GA:

■ variation operators – crossover and mutation,

■ selection method – Stochastic Reminder Roulette-Wheel,

■ standard generational evolutionary model.

Differences of NSGA from SGA:

■ fitness assignment scheme which prefers non-dominated solutions, and

■ fitness sharing strategy which preserves diversity among solutions of each non-dominated
front.

NSGA steps:

1. Initialize population of solutions.

2. Repeat

■ Calculate objective values and assign fitness values.

■ Generate new population.

Until stopping condition is fulfilled.
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Diversity preservation method originally proposed for solving multi-modal optimization
problems so that GA is able to discover and evenly sample all optima.

Idea: decrease fitness of similar solutions

Algorithm to calculate the shared fitness value of i-th individual in population of size N

1. Calculate the distances dij of individual i to all individuals j.

2. Calculate values of sharing function between individual i and all individuals j:

Sh(dij) =

{

1 −
(

dij

σshare

)α

, if dij ≤ σshare,

0, otherwise.

3. Calculate niche count nci of individual i:

nci =
N

∑
j=1

Sh(dij)

4. Calculate shared fitness of individual i:

f ′i = fi/nci

Remark: If d = 0, then Sh(d) = 1, meaning that two solutions are identical. If d ≥ σshare,
then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.



Fitness Sharing: Example

Multi-objective Opt.

Multi-objective EAs

• MOEAs: Why?

• MOEAs

• NSGA

• Fitness Sharing

• FS: Example

• NSGA: Fitness

• NSGA: Conclusions

• NSGA-II

• NSGA-II: Diversity

• NSGA-II Steps

• NSGA vs NSGA-II

• Simulation results

• Constraints

• NSGA-II Sym. Reg.

• SPEA2

• SPEA2 Steps

• SPEA2 Fitness

• SPEA2 Diversity

• SPEA2 Replacement

• SPEA2: Conclusions

Performance Measures

Summary
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Bimodal function, six solutions, and corresponding shared fitness values.

■ σshare = 0.5, α = 1.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Let’s take the first solution:

■ d11 = 0.0, d12 = 0.254, d13 = 0.731, d14 = 1.302, d15 = 0.127, d16 = 0.191

■ Sh(d11) = 1, Sh(d12) = 0.492, Sh(d13) = 0, Sh(d14) = 0,
Sh(d15) = 0.746, Sh(d16) = 0.618.

■ nc1 = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856

■ f ′(1) = f (1)/nc1 = 0.890/2.856 = 0.312

Remark:

■ The above example computes dij in decision space, dij = d(xi − xj).

■ To create diverse set of non-dominated solutions, we have to compute it in the
objective space, e.g., dij = d( f (xi)− f (xj)) = d(zi − zj) (or see next slide).
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Input: Set P of solutions with assigned objective values.
Output: Set of solutions with assigned fitness values (the bigger the better).

1. Choose sharing parameter σshare, small positive number ǫ,
initialize fmax = PopSize and front counter f ront = 1

2. Find set P′ ⊂ P of non-dominated solutions.

3. For each q ∈ P′,

■ assign fitness f (q) = fmax ,

■ calculate sharing function with all solutions in P′,
niche count ncq among solutions of P′ only,
the normalized Euclidean distance dij is calculated as

dij =

√

√

√

√

M

∑
m=1

(

f
(i)
m − f

(j)
m

f max
m − f min

m

)2

,

■ calculate shared fitness f ′(q) = f (q)/ncq.

4. fmax = min( f ′(q) : q ∈ P′)− ǫ,
P = P \ P′,
f ront = f ront + 1.

5. If not all solutions are assessed go to step 2, otherwise stop.
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Example:

■ First, 6 solutions are classified into different non-dominated fronts.

■ Then, the fitness values are calculated according to the fitness sharing method.

■ The sharing function method is used front-wise.

■ Within a front, less dense solutions have better fitness values.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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Computational complexity

■ Governed by the non-dominated sorting procedure and the sharing function
implementation.

■ non-dominated sorting – complexity of O(MN3).

■ sharing function – requires every solution in a front to be compared with every

other solution in the same front, total of ∑
ρ
j=1 |Pj|2, where ρ is a number of fronts.

Each distance computation requires evaluation of n differences between
parameter values.
In the worst case, when ρ = 1, the overall complexity is of O(nN2).

Advantages:

■ Assignment of fitness according to non-dominated sets makes the algorithm
converge towards the Pareto-optimal region.

■ Sharing allows phenotypically diverse solutions to emerge.

Disadvantages:

■ non-elitist

■ sensitive to the sharing method parameter σshare

■ requires some guidelines for setting the σshare

■ e.g., σshare =
0.5
n
√

q based on the expected number of optima q
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Fast non-dominated sorting approach

■ Computational complexity is O(MN2).

Diversity preservation

■ The sharing function method is replaced with a crowded comparison approach.

■ Parameterless approach.

Elitist evolutionary model

■ Only the best solutions survive to subsequent generations.



NSGA-II: Diversity preservation
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Density estimation: crowding distance estimates how much unique the solution is.

■ For individual i, find its predecessor f
(i−1)
m

and successor f
(i+1)
m in each objective fm.

■ Crowding distance idistance is the sum of
normalized differences of predecessor and
successor across all objectives:

idistance =
M

∑
m=1

‖ f
(i+1)
m − f

(i−1)
m ‖

f max
m − f min

m
,

where f max
m − f min

m is the range of the m-th
objective values w.r.t the whole population.

■ For individuals with extreme value of at least
one objective, idistance = ∞.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary

Algorithms.

Crowded comparison operator ≺c:

■ Every solution in the population has two attributes:

1. non-domination rank irank, and

2. crowding distance idistance

■ A partial order ≺c is defined as:

i ≺c j if irank
< jrank or (irank = jrank and idistance

> jdistance).
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1. Sort the current population Pt based on the non-domination.
Each solution is assigned a fitness equal to its non-domination level (1 is the best).

2. Apply the usual binary tournament selection, recombination, and mutation to create
a child population Qt of size N.

3. Combine both populations: Rt = Pt ∪ Qt. (Steady-state algorithm, elitism is ensured.)

4. Perform replacement (environmental selection): Population Pt+1 is formed according
to the following schema

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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Comparison of NSGA nad NSGA-II on bi-objective 0/1 Knapsack Problem with 750 items.

NSGA-II outperforms NSGA with respect to both performance measures.
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Problem with continuous Pareto-optimal front Problem with discontinuous Pareto-optimal front

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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Binary tournament selection with modified domination concept is used to choose the
better solution out of the two solutions i and j, randomly picked up from the population.

In the presence of constraints, each solution in the population can be either feasible or
infeasible, so that there are the following three possible situations:

1. both solutions are feasible,

2. one is feasible and other is not,

3. both are infeasible.

Constrained-domination: A solution i is said to constrained-dominate a solution j, if any
of the following conditions is true:

1. Solutions i and j are feasible, and solution i dominates solution j.

2. Solution i is feasible and solution j is not.

3. Solutions i and j are both infeasible, but solution i has a smaller overall constraint
violation.
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Comparison of NSGA-II and Ray-Tai-Seow’s Constraint handling approach

■ Ray, T., Tai, K. and Seow, K.C. ”Multiobjective Design Optimization by an Evolutionary Algorithm”, Engineering

Optimization, Vol.33, No.4, pp. 399-424, 2001.

NSGA-II Ray-Tai-Seow’s

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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Comparison of NSGA-II and Ray-Tai-Seow’s’s Constraint handling approach:

NSGA-II Ray-Tai-Seow’s

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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Optimization objectives:

■ Minimize MSE on the training data set.

■ Minimize deviation of the symbolic models
from the desired properties.

Desired properties:

■ Monotonically increasing in the intervals y = 〈−0.075,−0.01〉 and y = 〈0.01, 0.075〉
■ Monotonically decreasing in the interval y = 〈−0.007, 0.007〉
■ F(y) ≥ 0, for y ∈ 〈−0.075, 0.0〉
■ F(y) ≤ 0, for y ∈ 〈0.0, 0.075〉
■ |F(0.0)| < 0.005

■ |F(−0.075)− 0.001| < 0.0005

■ |F(0.075) + 0.001| < 0.0005
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P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 34 / 52

Well-fit models w.r.t. the MSE on training data only:
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Well-fit models w.r.t. the constraint violations:



NSGA-II: Bi-objective Symbolic Regression

P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 36 / 52

Models with small MSE on training data that fully comply with the constraints:



NSGA-II: Bi-objective Symbolic Regression
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Models with small MSE on training data that almost fully comply with the constraints:

The whole model Detail of left tail
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SPEA2 maintains two sets of solutions:

■ regular population of newly generated solutions, and

■ archive, which contains a representation of the nondominated front among all
solutions considered so far.

Archive:

■ The archive size is fixed, i.e., whenever the number of nondominated individuals is
less than the predefined archive size, the archive is filled up by good dominated
individuals.

■ A truncation method is invoked when the nondominated front exceeds the archive
limit.

■ A member of the archive is only removed if

1. a solution has been found that dominates it, or

2. the maximum archive size is exceeded and the portion of the front where the
archive member is located is overcrowded.

■ The archive makes it possible not to lose certain portions of the current
nondominated front due to random effects.

■ All individuals in the archive participate in selection.
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Input: N is the population size, N is the archive size.

1. Initialization: Generate an initial population P0 and create the empty archive
P0 = ∅. Set t = 0.

2. Fitness assignment: Calculate fitness of individuals in Pt and Pt.

3. Environmental selection: Copy all nondominated individuals in Pt and Pt to Pt+1.

■ If size of Pt+1 exceeds N then reduce Pt+1 using the truncation operator.

■ If size of Pt+1 is less than N then fill Pt+1 with dominated solutions in Pt and Pt.

4. Termination: If t ≥ T then return nondominated solutions in Pt+1. Stop.

5. Mating selection: Perform binary tournament selection with replacement on Pt+1 in
order to fill the mating pool.

6. Variation: Apply recombination and mutation operators to the mating pool and fill
Pt+1 with the generated solutions.

7. Increment generation counter t = t + 1.

8. Go to Step 2.
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Fitness assignment (fitness should be minimized):

■ For each individual, both dominating and
dominated solutions are taken into account.

■ Each individual i in the archive Pt and in the
population Pt is assigned a strength value S(i),
representing the number of solutions it
dominates.

■ The raw fitness R(i) of an individual i is
calculated as

R(i) = ∑
j∈Pt+Pt ,j≻i

S(j),

i.e., R(i) is determined by the strengths of its
dominators in both archive and population.
R(i) = 0 corresponds to a nondominated
solution.

■ Since the raw fitness assignment is based on the
concept of Pareto dominance, it may fail when
most individuals do not dominate each other.

Both objectives should be
maximized.
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Density information is incorporated to discriminate between individuals having
identical raw fitness values.

The density at any point is estimated as a (decreasing) function of the distance to the k-th
nearest data point – calculated as the inverse of the distance to the k-th nearest neighbor.

■ k equal to the square root of the sample size is used: k =
√

N + N.

■ Density D(i) is calculated as

D(i) =
1

σk
i + 2

where σk
i is the distance to the k-th nearest neighbor and it is made sure that D(i) < 1.

Final fitness is given as
F(i) = R(i) + D(i).
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After copying all nondominated individuals from archive and population to the archive
of the next generation,

■ if the archive is too small (i.e. |Pt+1 < N|), the best N − |Pt+1| dominated solutions
(w.r.t. fitness) in the previous archive and population are copied to the new archive;

■ if the archive is too large (i.e. |Pt+1 > N|), individuals from Pt+1 are iteratively
removed until |Pt+1| = N.
At each iteration, the individual which has the minimum distance to another
individual is chosen (a tie is broken by considering the second smallest distances and
so forth).
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SPEA2

■ uses the concept of Pareto dominance in order to assign scalar fitness values to
individuals;

■ uses a fine-grained fitness assignment strategy which incorporates density
information in order to distinguish between solutions that are indifferent, i.e., do not
dominate each other;

■ uses environmental selection in order to keep the optimal diversity in the archive;

■ seems to have advantages over NSGA-II in higher dimensional objective spaces.
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The result of a MOEA run is not a single scalar value, but a collection of vectors forming a
non-dominated set.

■ Comparing two MOEA algorithms requires comparing the non-dominated sets they
produce.

■ However, there is no straightforward way to compare different non-dominated sets.

Three goals that can be identified and measured:

1. The distance of the resulting non-dominated front to the Pareto front should be
minimized.

2. A good (in most cases uniform) distribution of the solutions found is desirable.

3. The extent of the obtained non-dominated front should be maximized, i.e., for each
objective, a wide range of values should be present.
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Size of the space covered S(X): it calculates the hypervolume of the multi-dimensional
region enclosed by a set A and a reference point Zre f . The hypervolume expresses the size
of the region that is dominated by A.

So, the bigger the value of this measure the better the quality of A is, and vice versa.

c©Knowles J. and Corne D.: On Metrics for Comparing Non-Dominated Sets.
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Pros:

■ Given two non-dominated sets, A and B, if each point in B is dominated by a point in
A then A will always be evaluated as being better than B.

■ Independence: the hypervolume calculated for the given set is not dependent on any
other, or any reference set.

■ Differentiates between different degrees of complete outperformance of two sets.

■ Intuitive meaning/interpretation.

Cons:

■ Requires defining some upper boundary of the region.
This choice does affect the ordering of non-dominated sets.

■ It has a large computational overhead, O(nk+1), where n is the number of
nondominated solutions and k is the number of objectives, rendering it unusable for
many objectives or large sets.

■ It multiplies apples by oranges, i.e., different objectives together.
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Coverage of two sets C(X, Y): given two sets of non-dominated solutions X and Y found
by the compared algorithms, the measure C(X, Y) returns a ratio of a number of solutions
of Y that are dominated by or equal to any solution of X to the whole set Y.

■ It returns values from the interval [0, 1].

■ The value C(X, Y) = 1 means that all solutions in
Y are covered by solutions of the set X. And vice
versa, the value C(X, Y) = 0 means that none of
the solutions in Y are covered by the set X.

■ Always both orderings have to be considered,
since C(X, Y) is not necessarily equal to
1 − C(Y, X).

C(A, B) = 0.25, C(B, A) = 0.75

Properties:

■ It has low computational overhead.

■ If two sets are of different cardinality and/or the distributions of the sets are
non-uniform, then it gives unreliable results.
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P. Pošı́k c© 2023 A0M33EOA: Evolutionary Optimization Algorithms – 49 / 52

Properties:

■ Any pair of C metric scores for a pair of sets A and B in which neither C(A, B) = 1
nor C(B, A) = 1, indicates that the two sets are incomparable according to the weak
outperformance relation.

■ It is cycleinducing – if three sets are compared using C, they may not be ordered.

Example:

■ C(A, B) = 0, C(B, A) = 3/4

■ C(B, C) = 0, C(C, B) = 1/2

■ C(A, C) = 1/2, C(C, A) = 0

B considered better than A, A better than
C, but C better than B.

c©Knowles J. and Corne D.: On Metrics for Comparing

Non-Dominated Sets.
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After this lecture, a student shall be able to

■ define a multi-objective optimization problem and describe the relationship between
decision and objective spaces;

■ define the dominance principle and the Pareto-optimal solutions;

■ identify non-dominated solutions in a set of solutions;

■ list and describe two goals of multi-objective optimization;

■ describe some non-evolutionary approaches to multi-objective optimizatin and
explain their deficiencies;

■ implement evolutionary multi-objective algorithms and explain their differences
from ordinary EA;

■ explain algorithms NSGA, NSGA-II, SPEA2 and their differences;

■ implement constraint handling in NSGA-II;

■ define performance measures used in multi-objective optimizations (S metric and C
metric);
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■ Kalyanmoy Deb:
Multi-objective optimization using evolutionary algorithms.
Wiley, 2001.

■ Kalyanmoy Deb et al.:
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197, 2000.

■ Eckart Zitzler et al.:
SPEA2: Improving the Strength Pareto Evolutionary Algorithm.
ETH Zurich, 2001.

■ Eckart Zitzler:
Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.
ETH Zurich, 1999.

■ Joshua Knowles and David Corne:
On Metrics for Comparing Non-Dominated Sets. IEEE Congress on Evolutionary
Computation, 2002.

http://books.google.com/books?id=OSTn4GSy2uQC&printsec=frontcover&dq=deb&hl=cs&cd=1
https://ieeexplore.ieee.org/document/996017
https://www.research-collection.ethz.ch/handle/20.500.11850/145755
https://sop.tik.ee.ethz.ch/publicationListFiles/zitz1999a.pdf
https://ieeexplore.ieee.org/document/1007013
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