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Introduction 2 /21

Contents
Differential evolution (DE):

®  Another successful heuristic for optimization in RP.

Swarm intelligence:

= Particle Swarm Optimization (PSO, optimization in RP).
= Ant Colony Optimization (ACO, optimization on graphs).
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Differential Evolution
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Differential Evolution
Developed by Storn and Price [SP97].

= Simple algorithm, easy to implement.

= Unusual breeding pipeline.
Algorithm 1: DE Breeding Pipeline

Input: Population X with fitness in f.
Output: Offspring population Xy.
1 begin
2 XN <@
3 foreach x € X do
4 (x1,%2,%3)  Select(X, f,x)
5 u < Mutate (x, x1,x2)
6 Yy < Recombine (1, x3)
7 XN < XnUBetter0f (x, y)
8 return Xy
m  Vectors x, x1, x2, x3 shall all be different, x1, x5, x3 chosen uniformly.
= For each population member x, an offspring y is created.
=y replaces x in population if it is better.
[SP97]  Rainer Storn and Kenneth Price. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341-359, December 1997.
P. Posik (© 2022
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DE Mutation and Recombination

m  Mutation and recombination:

u+x+F(x;—x), Fe(0,2)

o ta iff rand; < CRord = I,ng
Ya x34 iffrandy > CRand d # Lang

= rand; ~ U(0, 1), different for each dimension
8 [iang is a random index of the dimension that is always copied from u
s 2P 1 possible candidate points y (in case of uniform crossover)

ki
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DE Variants

Small variations of the base algorithm:

s DE/rand vs DE/best: the “best” variant variant uses the best of 4 parent vectors in place of x when generating the offspring.
s DE/./n: nis the number of difference vectors taken into account during mutation.
s DE/././binvs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

Many adaptive variants: SaDE, JADE, SHADE, ...
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Swarm Algorithms
Swarm intelligence:
® Innature: swarm (cz: roj, hejno) of small simple “units’ is able to create very complex behavioral patterns via cooperation.
= Emergence: non-linear interactions of simple rules — complex behavior of the whole system.
= Analogy to the behavior of bees, wasps, ants, fish, birds, ...
An engineering view:
m Isit possible to model these systems in silico and use that model to solve a practical task?
= How to design the simple units and their interactions such that a practically useful system emerges?
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Particle Swarm Optimization

Partice Swarm Optimization (PSO): an optimization algorithm inspired by the behavior of birds.

Inspiration:

m  Birds fly over the landscape and land on the highest hill.

m  Birds are modeled by particles in a multidimensional vector space.

m  The particles have their position and speed (and momentum).

m  They remember their own best position (i.e., the highest place of the landscape they flew over), but also

m they communicate and use the best position of their neighboring particles to update their own position and speed.

®  The communication is usually of 2 types:
1. Globally best position is known to all particles and is updated as soon as any particle finds an improvement.
2. Best position in neighborhood is shared among a group of neighboring particles.
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PSO Algorithm

Algorithm 2: Canonical PSO
1 begin
Initialize positions x; and velocities v;.
Initialize personal best positions x? < x;.
Initialize globally best position 8 < xy, Vi : f(xx) < f(x;)
fori=1,..,Ndo
v < wWo; +c1r1 0 (xf’ —xi) 4 carp 0 (x8 —x;)
X < X +v;
If f(x) < f(xh), 20 < x:.
If f(x;) < f(x8), x8 « x;.

| If termination condition not satisfied, go to 5.

© W N G R W N

i
1)

x8 globally best position
Meaning of symbols: w particle momentum, suitable value is e.g. 0.9,
o . D sometimes it decreases during simulation e.g. to
f  objective function (landscape) f : R — R 04.

N the number of particles

x;  particle positions, x; € RP
v;  particle velocities, v; € RP
x! personal best position

c1,c2  attraction constants, ‘cognitive” and ‘social’ com-
ponments, suitable values between 1 and 2

r, 1, random vectors from U(0,1)P

) vector multiplication by items

[KE02]

J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages 1942-1948, August 2002.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —12 / 21






PSO: Demo
PSO on 2D Sphere function:

»

N b

-1
9

10

1
9

10

-2

4

10

10

10




P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —13 / 21



Ant Colonies 14 / 21

Ant colonies
Ants:
m  Social insects
= Ant colonies exhibit an intelligent behavior:
m labor division, work coordination
= complex nests
= ability to find low-energy’ path between the nest and a food source
®  They communicate by
1. physical contact (they touch with their antennas)
2. interaction with the environment (pheromone trails)

"In nature, ants first search their environment randomly, until they find a source of food. Then, they return to the nest and lay a pheromone trail

behind. Other ants are able to sense this pheromone trail and are able to follow it, and thus make it stronger. The pheromone evaporates; after the
food source is exhausted, the random foraging reemerges.”
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Ant Colony Optimization
Ant Colony Optimization (ACO) is a class of stochastic optimization algorithms for solving combinatorial problems.

Similarities with the real ants: Differences from the real ants:

=  a colony of cooperating individuals = (usually) discrete world (a graph)

= pheromone trail = inner state, memory

= indirect communication via pheromone (stigmergy) m the amount of pheromone train can depend on the
m  probabilistic decision making, local strategies solution quality

= may use several types of pheromones

Algorithm 3: ACO

1 begin

2 Initialize the pheromone trails on graph edges: 7;;(0) = 7.

3 Set the initial position of ants in the graph.

4 while not termination condition do

5 foreach ant do

6 Build a solution.

7 Apply local search. // Optional, but used very often.
Update pheromone trails.

®
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Algorithm parts

Ant k constructs a solution:

m  Probability ant k will move from the current node i to neighboring node j is

. (i () ()P ok

i) = o ar g kdej €N,
Y Zle/v,-k (T ()% (ir )P !

where T the amount of pheromone on edge i — j,
ij = di known heuristic information,
if

«, B the influence of pheromone and heuristic information, respectively,
NF a set of graph nodes accessible to ant k from node i.

= If & = 0, only the heuristic information has an effect, and the solution construction reduces to greedy algorithm (nearest
neighbor heuristic).

= If B = 0, only the pheromone trail has an effect. The paths found in the first iteration have a big influence. Moreover, if & > 1,
stagnation occurs very fast, i.e. all ants use the same (not optimal) path.

m  Suggested values of parameters:

a=1 B=2t05 p=05 m = n (TSP) T = m/C"™ (TSP)

m is the number of ants, 7 is the number of cities, C"" is the length of the path constructed by the nearest neighbor heuristic.
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Algorithm parts (cont.)

Pheromone update on all edges

m  Done after all ants find their solution.

m  Pheromone evaporation: 7; < (1 —p)T;.
A R ]
p is the evaporation rate, allows to ‘forget’ bad paths.

= Pheromone deposition from all ants: T;; < T;j + Yl Atk

i where

Ak = 1/C*  if antk used edge i — j
g 0 otherwise,

Ck is the length of the path of ant k.
Other options:

m  The best path is reinforced the most.

®  The amount of deposited pheromone is proportional to the ant rank according to the path lengths (i.e., not directly proportional
to path lengths).

s Update of pheromone trails as soon as an ant uses and edge.
= More types of pheromones can be used:

m  Ants can start from both the nest and the food source.

= We can have more types of ants.
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Applications

ACO was able to find good solutions in the following tasks:

Advantages:

Demo: ant foraging

Traveling salesperson problem
Network routing, vehicle routing
Scheduling

Quadratic assignment problem
Shortest common supersequence
Classification rule learning

The graph topology can change in time (e.g. in routing problems)
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Conclusions 20 / 21
Summary

There are plenty of nature-inspired techniques, other than EAs.

Swarm intelligence takes advantage of the emergent swarm behavior which is a result of simple interactions among individual
swarm members.

Particle swarm optimization primarily aims at real-parameter optimization, but there are also variants suitable for discrete
spaces.

Ant colonies are used to solve problems which can be reduced to search for the shortest path in a graph (combinatorial
problems). Again, variants for real-parameter optimization exist (but are somewhat ‘unnatural’).

P. Posik (© 2022 AOM33EOA: Evolutionary Optimization Algorithms —21 / 21
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