# A0M33EOA:

# Differential Evolution. Other Types of Metaheuristics.

# Petr Pošík

# Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics

| Introduction                                      | 2    |
|---------------------------------------------------|------|
| Contents                                          | . 3  |
| Differential Evolution                            | 4    |
| DE Algorithm                                      | 5    |
| Differential Evolution  DE Algorithm  DE Variants | . 7  |
| Swarm Intelligence                                | 8    |
| Swarm Algorithms                                  | . 9  |
| PSO                                               | 10   |
| PSO                                               | . 11 |
| PSO Algorithm                                     | . 12 |
| PSO: Demo.                                        | . 13 |
| Ant Colonies                                      | 14   |
| Ant colonies Ant colonies                         | . 15 |
| ACO                                               | . 16 |
| Algorithm parts                                   | 17   |
| Applications                                      | 19   |
| Conclusions                                       | 20   |
| Summary                                           | 21   |
|                                                   |      |

Introduction 2 / 21

#### **Contents**

Differential evolution (DE):

 $\blacksquare$  Another successful heuristic for optimization in  $R^D$ .

Swarm intelligence:

- Particle Swarm Optimization (PSO, optimization in  $\mathbb{R}^D$ ).
- Ant Colony Optimization (ACO, optimization on graphs).

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 3 / 21

# Differential Evolution 4 / 21

### **Differential Evolution**

Developed by Storn and Price [SP97].

- Simple algorithm, easy to implement.
- Unusual breeding pipeline.

# Algorithm 1: DE Breeding Pipeline

```
Input: Population X with fitness in f.

Output: Offspring population X_N.

1 begin

2 X_N \leftarrow \emptyset

3 foreach x \in X do

4 (x_1, x_2, x_3) \leftarrow \text{Select}(X, f, x)

5 u \leftarrow \text{Mutate}(x, x_1, x_2)

6 y \leftarrow \text{Recombine}(u, x_3)

7 X_N \leftarrow X_N \cup \text{BetterOf}(x, y)

8 return X_N
```

- Vectors x,  $x_1$ ,  $x_2$ ,  $x_3$  shall all be different,  $x_1$ ,  $x_2$ ,  $x_3$  chosen uniformly.
- For each population member x, an offspring y is created.
- $\blacksquare$  *y* replaces *x* in population if it is better.

[SP97] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359, December 1997.

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms –  $5\,/\,21$ 

### **DE Mutation and Recombination**

■ Mutation and recombination:

$$u \leftarrow x + F(x_1 - x_2), \quad F \in (0, 2)$$

$$y_d \leftarrow \begin{cases} u_d & \text{iff rand}_d \le CR \text{ or } d = I_{\text{rand}} \\ x_{3,d} & \text{iff rand}_d > CR \text{ and } d \ne I_{\text{rand}} \end{cases}$$

- rand<sub>d</sub>  $\sim \mathcal{U}(0,1)$ , different for each dimension
- lacksquare  $I_{rand}$  is a random index of the dimension that is always copied from u
- $\blacksquare$  2<sup>D</sup> 1 possible candidate points y (in case of uniform crossover)



P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 6 / 21

## **DE Variants**

Small variations of the base algorithm:

- DE/rand vs DE/best: the "best" variant variant uses the best of 4 parent vectors in place of x when generating the offspring.
- $\blacksquare$  DE/./n: n is the number of difference vectors taken into account during mutation.
- DE/././bin vs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

Many adaptive variants: SaDE, JADE, SHADE,  $\dots$ 

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 7 / 21

Swarm Intelligence 8 / 21

## **Swarm Algorithms**

Swarm intelligence:

- In nature: swarm (cz: roj, hejno) of small simple 'units' is able to create very complex behavioral patterns via cooperation.
- **Emergence**: non-linear interactions of simple rules complex behavior of the whole system.
- Analogy to the behavior of bees, wasps, ants, fish, birds, ...

An engineering view:

- Is it possible to model these systems *in silico* and use that model to solve a practical task?
- How to design the simple units and their interactions such that a practically useful system emerges?

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 9 / 21

# **Particle Swarm Optimization**

10 / 21

### **Particle Swarm Optimization**

Partice Swarm Optimization (PSO): an optimization algorithm inspired by the behavior of birds.

#### Inspiration:

- Birds fly over the landscape and land on the highest hill.
- Birds are modeled by particles in a multidimensional vector space.
- The particles have their *position* and *speed* (and momentum).
- They remember their own best position (i.e., the highest place of the landscape they flew over), but also
- they communicate and use the best position of their neighboring particles to update their own position and speed.
- The communication is usually of 2 types:
  - 1. Globally best position is known to all particles and is updated as soon as any particle finds an improvement.
  - 2. Best position in neighborhood is shared among a group of neighboring particles.

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 11 / 21

# **PSO Algorithm**

### Algorithm 2: Canonical PSO

```
Initialize positions x_i and velocities v_i.
Initialize personal best positions \mathbf{x}_i^b \leftarrow \mathbf{x}_i. Initialize globally best position \mathbf{x}^g \leftarrow \mathbf{x}_i, \forall i: f(\mathbf{x}_k) \leq f(\mathbf{x}_i)
 for i = 1, ..., N do
           \boldsymbol{v}_i \leftarrow \omega \boldsymbol{v}_i + c_1 \boldsymbol{r}_1 \circ (\boldsymbol{x}_i^b - \boldsymbol{x}_i) + c_2 \boldsymbol{r}_2 \circ (\boldsymbol{x}^g - \boldsymbol{x}_i)
             x_i \leftarrow x_i + v_i
      \begin{bmatrix} x_i & x_i + v_i \\ \text{If } f(\mathbf{x}_i) < f(\mathbf{x}_i^b), \mathbf{x}_i^b \leftarrow \mathbf{x}_i. \\ \text{If } f(\mathbf{x}_i) < f(\mathbf{x}^g), \mathbf{x}^g \leftarrow \mathbf{x}_i. \end{bmatrix}
If termination condition not satisfied, go to 5.
```

### Meaning of symbols:

- objective function (landscape)  $f: \mathcal{R}^D \to \mathcal{R}$
- N the number of particles
- particle positions,  $x_i \in \mathcal{R}^D$  $x_i$
- particle velocities,  $v_i \in \mathcal{R}^D$  $v_i$
- $x_i^b$ personal best position





- globally best position  $x^g$
- particle momentum, suitable value is e.g. 0.9,  $\omega$ sometimes it decreases during simulation e.g. to
- attraction constants, 'cognitive' and 'social' com $c_1, c_2$ ponments, suitable values between 1 and 2
- random vectors from  $U(0,1)^D$  $r_1, r_2$
- vector multiplication by items

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 12 / 21



Ant Colonies 14 / 21

### Ant colonies

#### Ants:

- Social insects
- Ant colonies exhibit an intelligent behavior:
  - labor division, work coordination
  - complex nests
  - ability to find 'low-energy' path between the nest and a food source
- They communicate by
  - 1. physical contact (they touch with their antennas)
  - 2. interaction with the environment (pheromone trails)

"In nature, ants first search their environment randomly, until they find a source of food. Then, they return to the nest and lay a pheromone trail behind. Other ants are able to sense this pheromone trail and are able to follow it, and thus make it stronger. The pheromone evaporates; after the food source is exhausted, the random foraging reemerges."

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 15 / 21

### **Ant Colony Optimization**

Ant Colony Optimization (ACO) is a class of stochastic optimization algorithms for solving combinatorial problems.

Similarities with the real ants:

- a colony of cooperating individuals
- pheromone trail
- indirect communication via pheromone (stigmergy)
- probabilistic decision making, local strategies

Differences from the real ants:

- (usually) discrete world (a graph)
- inner state, memory
- the amount of pheromone train can depend on the solution quality
- may use several types of pheromones

# Algorithm 3: ACO

1 begin

P. Pošík © 2022

Initialize the pheromone trails on graph edges:  $\tau_{ij}(0) = \tau_0$ .

Set the initial position of ants in the graph.

4 while not termination condition do

foreach ant do

Build a solution.

Apply local search. // Optional, but used very often.

Update pheromone trails.

A0M33EOA: Evolutionary Optimization Algorithms – 16 / 21

## Algorithm parts

#### Ant *k* constructs a solution:

■ Probability ant *k* will move from the current node *i* to neighboring node *j* is

$$p_{ij}^k(t) = \frac{(\tau_{ij}(t))^{\alpha}(\eta_{ij})^{\beta}}{\sum_{l \in \mathcal{N}_i^k} (\tau_{il}(t))^{\alpha}(\eta_{il})^{\beta}}, \, \mathrm{kde} \, j \in \mathcal{N}_i^k,$$

where  $au_{ij}$ the amount of pheromone on edge  $i \rightarrow j$ ,

 $\eta_{ij} = \frac{1}{d_{ii}}$ known heuristic information,

 $\alpha, \beta$   $\mathcal{N}_{i}^{k}$ the influence of pheromone and heuristic information, respectively,

a set of graph nodes accessible to ant k from node i.

- If  $\alpha = 0$ , only the heuristic information has an effect, and the solution construction reduces to greedy algorithm (nearest neighbor heuristic).
- If  $\beta = 0$ , only the pheromone trail has an effect. The paths found in the first iteration have a big influence. Moreover, if  $\alpha > 1$ , stagnation occurs very fast, i.e. all ants use the same (not optimal) path.
- Suggested values of parameters:

 $\beta = 2$  to 5  $\alpha = 1$ 

 $\rho = 0.5$ 

m = n (TSP)

 $\tau_0 = m/C^{nn}$  (TSP)

m is the number of ants, n is the number of cities,  $C^{nn}$  is the length of the path constructed by the nearest neighbor heuristic.

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms - 17 / 21

# Algorithm parts (cont.)

### Pheromone update on all edges

- Done after all ants find their solution.
- Pheromone evaporation:  $\tau_{ij} \leftarrow (1 \rho)\tau_{ij}$ .  $\rho$  is the evaporation rate, allows to 'forget' bad paths.
- Pheromone deposition from all ants:  $\tau_{ij} \leftarrow \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$ , where

$$\Delta \tau_{ij}^k = \left\{ \begin{array}{ll} 1/C^k & \text{if ant } k \text{ used edge } i \to j \\ 0 & \text{otherwise,} \end{array} \right.$$

 $C^k$  is the length of the path of ant k.

#### Other options:

- The best path is reinforced the most.
- The amount of deposited pheromone is proportional to the ant rank according to the path lengths (i.e., not directly proportional to path lengths).
- Update of pheromone trails as soon as an ant uses and edge.
- More types of pheromones can be used:
  - Ants can start from both the nest and the food source.
  - We can have more types of ants.

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms - 18 / 21

## **Applications**

ACO was able to find good solutions in the following tasks:

- Traveling salesperson problem
- Network routing, vehicle routing
- Scheduling
- Quadratic assignment problem
- Shortest common supersequence
- Classification rule learning
- . . . .

### Advantages:

■ The graph topology can change in time (e.g. in routing problems)

Demo: ant foraging

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 19 / 21

Conclusions 20 / 21

## **Summary**

- $\blacksquare$  There are plenty of nature-inspired techniques, other than EAs.
- Swarm intelligence takes advantage of the emergent swarm behavior which is a result of simple interactions among individual swarm members.
- Particle swarm optimization primarily aims at real-parameter optimization, but there are also variants suitable for discrete spaces.
- Ant colonies are used to solve problems which can be reduced to search for the shortest path in a graph (combinatorial problems). Again, variants for real-parameter optimization exist (but are somewhat 'unnatural').

P. Pošík © 2022

A0M33EOA: Evolutionary Optimization Algorithms – 21 / 21