AOMB33EOA:
EAs for Real-Parameter Optimization.
Evolution strategies. CMA-ES.

Petr Posik

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Many parts adapted or taken from
Kubalik, J. Real-Parameter Evolutionary Algorithms.
Lecture slides for A4M33BIA course. 2016

Introduction
REAl B AS. . oo e
(@03 4= 0 =

Binary EAs
Mapping example.
Geno-Pheno Mapo
Bit-flip MUL. . .o
L XOV T .« .
o =)
SUIMINATY . . ettt et e e

Real EAs
Ops Orreal EAS . ..o
Standard OPs
AdVANCed OPS . . . o oo
G
SUIMINATY . o ettt ettt et e e e e

Evolution Strategies (ES)
3o P
PIpeline. . . .
(@10 T3] e P P
GausSIan IMUtatION oottt ettt et e e e e e e e e e e e e e e e e

LSS . ottt e e e e

CMA-CES COAE (1)« « oottt et ettt et e e e e e e e e e
CMAES €O (2) - - v v vvtt ettt e e e e e e e e e e
CMAES COde (B) « « oottt t et e et e et
CMAFES COde. . o o oottt e e e e
CMA-ES SUMMATYo ettt e e e e e
ReIatiONS. . .« o oottt

Summary
Learning oUutCcOmes. L

Introduction 2 /38

EAs for real-parameter optimization
Phenotype:

m Representation that the fitness function understands and is able to evaluate.
= Vector of real numbers.

Genotype?

m Representation to which the “genetic” operators are applied.

m Binary vector encoding the real numbers.
= Discretization. Finite space.
= Discretized problem is not the same as the original one.
= Can miss the real function optimum. Results depend on the chosen precision of discretization.
m Requires encoding and decoding process.

m Vector of real numbers (genotype = phenotype).
m [nfinite domain (theoretically), even for space with finite bounds.

= Opportunity to exploit graduality or continuity of the function (slight changes in variables result in slight changes of the
function value).

= No need for encoding/decoding.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms -3 / 38

Contents

Contents:
= Standard selecto-recombinative genetic algorithms with binary representation.
= Standard selecto-recombinative genetic algorithms with real representation.
= Evolution strategies.
= ES with Covariance Matrix Adaptation (CMA-ES).

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —4 / 38

Standard EAs with Binary Encoding 5/38

Genotype-Phenotype Mapping

Assume a candidate solution to a function of 2 real numbers encoded as a single binary chromosome. Both numbers are encoded
using 10 bits. The range of both numbers is (—5.12,5.11).

Which pair of real numbers corresponds to chromosome 1000000000 0100000000 ?

A (512, 256)

B (2.56,0)

l (10°, 108)
l (0, -2.56)

P. Pogik © 2022

AOMB33EOA: Evolutionary Optimization Algorithms —6 / 38

Genotype-Phenotype Mapping

Mapping binary to real vector representation (2D example):
= 2D real domain, bound constraints [x;, x;] X [y1, Y]
s Using n bits to encode each parameter.

xp=[x1 X .. x|y Y2 . Yn |

= How to compute phenotype from known genotype?

bin2int(xq,...,x bin2int(y, ...,
R= x’“"’”‘”% i+ (g —) B - Y)

2" -1

Where in the EA should we place the mapping?

Algorithm 1: Evolutionary Algorithm

1 begin

X ¢~ InitializePopulation()

f < Evaluate(X)

xBSF/fBSF — UpdateBSF(X,f)

while not TerminationCondition() do
XN ¢ Breed(X, f)
fn ¢ Evaluate(Xy)
xBSF/fBSF < UpdateBSF(Xy, fn)
X,f — Join(X,f, Xf\rft\)

return Xpsr, fpsr

// using certain breeding pipeline

© ® N e G oA W N

// aka ‘‘replacement strategy’’

=
=)

Algorithm 2: Evolutionary Algorithm with Genotype-Phenotype Mapping
1 begin
X < InitializePopulation()
f < MapAndEvaluate (X)
xBSF/fBSF < UpdateBSF (X,)
while not TerminationCondition() do
XN ¢ Breed(X, f)
fN + MapAndEvaluate(Xy)
XBsr, fesr ¢ UpdateBSF(Xy, fn)
X, f < Join(X, f, Xy, fN)

return xBSFrfBSF

// using certain breeding pipeline

© ® N o W oA W N

// aka ‘‘replacement strategy’’

-
1)

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms -7 / 38

Effect of bit-flip mutation

The neighborhood of a point in the phenotype space generated by an operation applied on the genotype.
= Genotype: 10bit binary string.
= Phenotype: vector of 2 real numbers (in a discretized space).

s Operation: “bit-flin” mutation.

307 30,

X
25+ y 25
20+ X 20
18F Sxx x X 15}

X X Sx X X

10} 10f

X
5t 51 y
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 0 5 10 15 20 25 30

A very common situation:

m Point which is locally optimal w.r.t. the phenotype is not locally optimal w.r.t. the genotype recombination operators. (

m Point which is locally optimal w.r.t. the genotype recombination operators is not locally optimal w.r.t. the phenotype. (BAD:
Even the best solutions found by EA do not have to correspond to the real optima we look for!)

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —8 / 38

Effect of 1-point crossover

The neighborhood of a point in the phenotype space generated by an operation applied on the genotype.
= Genotype: 10bit binary string.
= Phenotype: vector of 2 real numbers (in a discretized space).
= Operation: 1-point crossover.

301 x 30} X ®
25¢ o5t
X
20 B x 20 F
13 F X X x&x X X 15¢ ® X
X
10 101
X
5 B 5 -
0 ‘ ‘ v ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 i5 20 25 0 5 10 15 20 25 30
P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms -9 / 38

Effect of 2-point crossover

The neighborhood of a point in the phenotype space generated by an operation applied on the genotype.
= Genotype: 10bit binary string.
= Phenotype: vector of 2 real numbers (in a discretized space).
m Operation: 2-point crossover.

3 X X x><§ 304
X
25 osl X X X X 2
X X XXS
2 X X XX 2
158X X XXX XXX g g 15¢
XX X X
10 106 X X xx%xggg 2
gxx X X
5 5,
X
A VRN 8 xxx X
0 5 10 20 25 0 5 10 15 20 25 30
P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —10 / 38

Summary

Binary encoding for real-parameter optimization:
m Results depend on the chosen discretization.

® The neighborhoods generated by binary crossover and mutation operators do not fit well to the “usual structures” of
real-parameter functions.

m Can be useful for a rough exploration of the search space. (Then we can increase the resolution, or switch to real representation.)
= Using Gray code may help in certain situations, but does not solve the fundamental issues.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —11 / 38

Standard EAs with Real Encoding

12 / 38

Recombination Operators for ESs with Real Encoding

Genotype = Phenotype = Vector of real numbers!

Standard mutation operators:

m Gaussian mutation
m Cauchy mutation

Standard recombination operators:
= Simple (1-point) Crossover: same as for binary strings
m Uniform Crossover: same as for binary strings
= Average Crossover
m Arithmetic Crossover
= Flat Crossover
= Blend Crossover BLX-(«)

Advanced recombination operators:
= Simplex Crossover (SPX)
m Unimodal Normal Distribution Crossover (UNDX)
m Parent-Centric Crossover (PCX)

P. Pogik © 2022

AOMB33EOA: Evolutionary Optimization Algorithms —13 / 38

Standard Recombination Operators for Real EAs

1

Assume that x! = (x},.. 2 2

., xt)and x? = (x2,...,x2) are two parents.

built as follows:

1
y= 50+)

y=r-xl+(1-r) 2%

where r € (0,1) is a constant, or varies with regard to the
number of generations made, or is randomly chosen.

= Simple (1-point) Crossover: a positioni € 1,2,...,n — 1 is randomly chosen, and two offspring chromosomes y! and y? are

m Average Crossover: an offspring y is created as and average of the parents:

m Arithmetic Crossover: an offspring is created as a weighted average of the parents:

X2

Ral

X2

Ral

X2

Ral

P. Pogik © 2022

AOMB33EOA: Evolutionary Optimization Algorithms —14 / 38

Standard Recombination Operators for Real EAs (cont.)

m Flat Crossover: an offspring y = (y1,...,Y») is created such that each y; is sampled with uniform distribution from interval

X2
Vi € [min(x},x%),max(x},x%)].

X
= Blend Crossover: an offspring y = (y1,...,Y») is created such that each y; is sampled with uniform distribution from interval
X

Yi S [Cmin - D‘L Cmax + IXI]/

o1 2 _ 1,2
where cpin = mln(p,- Vi), Cmax = max(pl-,pl-)
I = Cmax — Cmin, and & > 0.

X

Characteristics:

= Simple, and average crossovers are deterministic; arithmetic crossover does not introduce enough diversity either.
= Simple, flat, and blend crossovers are not rotationally invariant.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —15 / 38

Advanced Operators
Simplex Crossover (SPX): s

= Generates offspring around the mean of the y parents
® with uniform distribution
® ina simplex which is \/u + 1 times bigger than the parent simplex.

Unimodal Normal Distribution Crossover (UNDX):
m Generates offspring around the mean of the u parents
® with multivariate normal distribution.
m Preserves the correlation among parameters well.

Parent-Centric Crossover (PCX):
= Generates offspring around one of the parents
m with multivariate normal distribution.
m The distribution shape is determined by the relative positions of the parents.
= Similar to adaptive mutation.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —16 / 38

Generalized Generation Gap (G3) Algorithm

Choose two parents at random from y parents.

L.

two parents with these solutions.

D = 20.

Generate A offspring from u parents using a recombination scheme.

le+06 — T T T T

1le+06 F

100000 -

100000

10000 [

Function Evaluations
"
T
|
L]
\:\\ <
4
k]
2
Function Bvaluations

Function Evaluations

10000 e i e ey
10 20 50 100 300 -
A

1000

[
=}

[Deb05] K. Deb. A population-based algorithm-generator for real-parameter optimization. Soft Computing, 9(4):236-253, April 2005.

From the population P(t), select the best parent and (y — 1) other parents randomly.

1e+06

100000

10000

G3 [Deb05]: Elite preserving, steady-state, computationally fast. Special breeding pipeline and replacement operator.

Form a combined subpopulation of chosen two parents and A offspring, choose the best two solutions and replace the chosen

Comparisons of UNDX, SPX and PCX with the G3 model on Ellipsoidal, Schwefel’s, and Generalized Rosenbrock’s functions for

4 10 20 50 100 300

P. Posik (© 2022

AOMB33EOA: Evolutionary Optimization Algorithms —17 / 38

Summary

Selecto-recombinative standard EAs with real encoding
= often use the same algorithm and breeding pipeline as binary EAs,
m although a specialized pipeline can be designed (e.g., G3).
m They use different mutation and crossover operators.

Operators for real encoding;:

m Much wider range of possibilities than in binary space.
m Generally, there is no single best operator for all problems.

m Operators resulting in normal distribution of offspring usually work better for practical problems.

P. Posik (© 2022

AOMB33EOA: Evolutionary Optimization Algorithms —18 / 38

Evolution Strategies (ES) 19 / 38

Evolution Strategies: Introduction
“The European branch of Evolutionary Computation.”

m Originated in Germany in 1960’s (Ingo Rechenberg and Hans-Paul Schwefel).
ES use the natural representation of vectors in RP as “chromosomes”.

ES originally relied on mutation and selection only; recombination was added later.

Mutation is performed by adding a random vector distributed according to multivariate Gaussian with covariance matrix o1,
diag(cy,...,0p), or general C.

m Special feature: built-in adaptation of mutation parameters!
Notation: (uTA)-ES

m y is the population size (and number of parents),

m A is the number of offspring created each generation,

m + or, denote the replacement strategy:

m |, is generational strategy: old population is discarded, new population of y parents is chosen from the A generated offspring.

m + is steady-state strategy: old population is joined with the new offspring, new population of y parents is chosen from the
joined y + A individuals.

Notation: (p/pTA)-ES
m Recombination (usually deterministic), choose p individuals out of y parents, u > p.

m Sometimes, subscript to p is used to denote the type of recombination, e.g., p; for intermediate recombination (average), or pw
for weighted recombination (weighted average). Other recomb. ops from Real EAs can be used in principle.

P. Posik (© 2022 AOM33EOA: Evolutionary Optimization Algorithms —20 / 38

Evolution Strategy Algorithm

ES use ordinary EA template (see lecture 1), with only slightly changed pipeline:
Algorithm 3: ES Breeding Pipeline

Input: Population X of y individuals, with their fitness in f.
Number of parents p. Number of offspring A.
Output: Population Xy of A offspring.

1 begin

2 XN+ @

3 fori<+1,...,Ado

4 Xg < SelectParents(X, f) // p parents
5 XR ¢ Recombine (Xg) // usually only single offspring
6 xN < Mutate(xg)

7

XNy +— Xy U {XN}
return Xy

®©

The join() operation then forms new population for the next generation by choosing the best y individuals either from Xy
(comma strategy) or from X U Xy (plus strategy).

Very often p = p, resulting in (y/putA) — ES. All offspring are then centered around a single vector xg. Lines 4 and 5 can thus
be removed from the for-loop and placed before it.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —21 / 38

10

Question: Gaussian mutation
Which of the following figures depict Gaussian distributions with covariance matrices given by
= C=c%Iand

= C=diag(c?,...,03)?

L

-2 0 2 =2 0 2 =2 0 2
l left and middle
B left and right
l middle and right
l right and left
P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —22 / 38

Gaussian Mutation

Gaussian mutation: the mutated offspring y are distributed around the original individual x as
y ~ N(x,C) ~ x+N(0,C) ~ x+ CZN(0,I),

where N(p, C) is a multivariate Gaussian distribution with probability density function in RP

1 1 TA1 >
x|, C) = ———exp | —=(x— C ' (x—
Folel €)= g (5 wC e
Parameters:
m u: location of the distribution. When used for 4 4 4
mutation, # = 0 to prevent bias. e \
= C: Covariance matrix; determines the shape of the 2 2 [y 2 =
distribution: [\ s
0 0 Lk 0 y
m Isotropic: C = 0?1 ‘\ ary [:4/ v
i . C = di 2 2 L
® Axis-parallel: C = diag(o7,...,00) - - - BV . (/ .
m General: C positive definite . . | / =
How many degrees of freedom (free parameters) do —4 —4 =4
these have? v S— 5 p 5 e B— 5
How to set up the parameters of covariance matrix?
P. Posik (© 2022 AOM33EOA: Evolutionary Optimization Algorithms —23 / 38

11

Adaptation of Mutation Parameters
Adaptation of mutation parameters is key to ES design!
Example: (14 1)-ES (hill-climber) with isotropic mutation on Sphere function: f = ¥; x?

= Random search vs
m (1+1)-ES with constant o = 1072 vs
= (1+1)-ES with o adapted using £-rule with oy = 1077

o e R—— random search __| 0 |
T ; 10
E /%) onstant ¢ %
E y £
£ ~ f = -1
*g_103m,| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 210 =
/ o
2 / adaptive o
§ . J’ \dtegp-size o % 1072 :
810 —-glep=gize-c {\\\ ---------------- 1 % -
£ \ : : 5 -
© : " ..
/ ; \ 10 'k tep-sizea:
| : : [REEE | FERE RS
107 : : ; 2 4 6
0 500 1000 1500 10 _ 10 10
function evaluations

function evaluations

® Random search: inefficient.
= Constant ¢: initially too small value, appropriate value between 600 and 800 evals, too large value at the end.

= Adaptive 0: near-optimal value during (almost) the whole run!

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —24 / 38

1/5 Success Rule

Progress rate ¢: a ratio of the distance covered towards the optimum and the number of evaluations required to reach this distance.

Rechenberg analyzed the behavior of (1+1)-ES on 2 simple functions:
m Corridor function: fi(x) = x1 if [x;| < 1fori € (2,...,D), otherwise fi(x) = oo
= Sphere function: f;(x) = Y; x?
Findings:
= Inboth cases, the optimal step size 0°?! is inversely proportional to the dimension of the space D (number of variables).

® The maximum progress rate ¢"** is also inversely proportional to D.
= For the optimal step sizes, the following probabilities of a successful mutation were obtained:
w pd=1/(2¢) ~0.184
n p‘;p 2t ~ 0.270
1/5 success rule: To obtain nearly optimal (local) performance of the (1+1)-ES in real-valued search spaces, tune the mutation step in such a way
that the (measured) success rate is about 1/5.
m Ifitis greater than 1/5, increase the mutation step o; if it is less, decrease ¢
In practice, the 1/5 success rule has been mostly superseded by more sophisticated methods. However, its conceptual insight remain

remarkably valuable.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —25 / 38

12

(1+1)-ES with 1/5 rule

Algorithm 4: (1+1)-ES with 1/5 rule
Input: De N*,d~ /D +1
1 begin
x < Initialize()
while not TerminationCondition() do

xn — x+0oN(0,1) // mutation/perturbation
b < BetterThan(xy, x)

// Mutation successful?
1
6 0(—0(exp(1(b)—%))d

7 if b then
8 | x<ay

G R W N

// 1/5 rule

= 1(b) is an indicator function:

1 iff bis true,
ﬂ(b)—{ 0 iff bis false.

In (1 + A)-ES, replace b with the proportion r of improving mutations in generation.
Other implementations are possible.

P. Posik (© 2022 AOM33EOA: Evolutionary Optimization Algorithms —26 / 38

Self-adaptation
Self-adaptation:

m Strategy parameters are part of the chromosome! x = (xy,...,Xp,01,...,0Dp)
m Parameters undergo evolution together with the decision variables.
m Each individual holds information how it shall be mutated.

Example: assuming axis-parallel normal distribution is used,

= mutation of x = (x1,...,xp,01,...,0p) creates an offspring individual

/ / / / /
x' = (x1,...,xp,01,...,0p)

by mutating each part in a different way:
o} + o;-exp(T-N(0,1)) xj + x;+07-N(0,1)
= Intuition: a “bad” ¢’ probably generates bad x’ and is eliminated by selection.
Remarks:
® An algorithm can adapt a global step size o and coordinate-wise step sizes separately, such that the resulting coordinate-wise st.

dev. is given as ¢ - ;.

m The global step size may be adapted e.g. by the 1/5-rule.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —27 / 38

13

Generalizations and issues
Generalizing from
® axis-parallel mutation distributions with D strategy parameters to

= general normal mutation distributions with full cov. matrix requires adaptation of 1 D(D + 1) strategy parameters!

Issues with self-adaptation: selection noise (the more parameters, the worse)!
® The intuition from the previous slide does not work much!

= A good offspring may be generated with poor strategy parameter settings (poor setting survives), or a bad offspring may be
generated with good parameter settings (good setting is eliminated).

Solutions: derandomization via

= reducing the number of mutation distribution: (1,A)-ES, (1/p, A)-ES, and

® accumulating info in time (evolution paths).

P. Posik (© 2022 AOM33EOA: Evolutionary Optimization Algorithms —28 / 38

CMA-ES

Evolutionary strategy with covariance matrix adaptation [HOO01]:
m Currently, de facto standard in real-parameter optimization.
w (p/pw, A)-ES: recombinative, mean-centric
m Offspring is created by sampling from a single normal distribution.
® Successful mutation steps are used to adapt the mean x and the covariance matrix C of the distribution.
m Accumulates the successful steps over many generations.

1

[HOO01] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159-195, 2001.

P. Posik (© 2022 AOM33EOA: Evolutionary Optimization Algorithms —29 / 38

14

CMA-ES Demo
CMA-ES on the Rosenbrock function:

3

ot

-3 -2 -1 0

P. Posik (© 2022

AOMB33EOA: Evolutionary Optimization Algorithms —30 / 38

CMA-ES Code (1)

CMA-ES is a complex, but carefully designed and tuned algorithm!

Really? It does not seem so from the pseudocode below...

Algorithm 5: CMA-ES

1 begin

2 | Initialize: x € RP,c e RP,C=1I.

3 while not TerminationCondition() do

4 M < SampleDistribution(A, N(x,02C))
5 ‘P < SelectBest (j1, M)

6 (x,0,C) + UpdateModel (x, o, C,P)

7 return x

Hm, ok, how is the Normal distribution actually sampled?

P. Posik (© 2022

15

AOMB33EOA: Evolutionary Optimization Algorithms —31 / 38

CMA-ES Code (2)
CMA-ES with the distribution sampling step expanded:
Algorithm 6: CMA-ES

1 begin

2 Initialize: x € RP,c e R?,C = 1I.

3 while not TerminationCondition() do
4 forkel,...Ado

5

L Zy F/\[(O,I)

1
X~ x+0C2 X zi

7 P <+ SelectBest (jt, {zg, f(x))|1 <k <A}
8 (x,0,C) «+ UpdateModel(x, o, C,P)

s | return x

Remarks:

= Allindividuals exist in 2 “versions”: z; distributed as (0, I), and x; distributed as A (x,0%C).
® x; are used just as an intermediate step for evaluation!

m z; are used for model update via the population of selected parents P.

OK, that’s not that complex. What about the model update?

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —32 / 38

CMA-ES Code (3)
CMA-ES with the model update step expanded:
Algorithm 7: CMA-ES

1 begin

2 Initialize: x € RP,c € R?,C=1,5, =0,s. = 0.

3 while not TerminationCondition() do

4 forkec1,...Ado

5 zi + N(0,1)

1

6 X < x+0C2 X zi

7 P < SelectBest (i, {z, f(x))|1 <k <A})

8 se — (1—co)se +/co(2— o) /Tlw Y, Wizk // search path for o

z} €P
1
9 Sc « (1 —cc)sc + her/ce(2 —) \VTlw Z wiC2 zy // search path for C
z} €P
10 0 o-expt/d (ﬁ — 1) // update o
P BV D] o
1 C (I—ci4cn—cy)CHoersesl +cu Y w,C22,(C2z)T // update C
z3€P
1
12 X4 x+cuoC2 Z Wi Zk // update x
L 2 €P

13 | returnx

Remark: Two search paths, s, and s, are part of the algorithm state, together with x, o, and C. They accumulate the algorithm
moves accross iterations.

And what are all those cy, ¢y, ¢y, ... ?

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —33 / 38

16

CMA-ES Code
The full CMA-ES pseudocode:

Algorithm 8: CMA-ES

Given: D € N, A >5,u~ A/2, wy = w’(k)/):;:zl w' (k), w' (k) = log(A/2 4+ 1/2) — log rank(f (xx)), pw = 1/):;(;1 w%, co ~ pw/ (D + pw), d =1+ \/pw/D,
e~ (4+ pw/D) /(D +4+2pu0/D), ¢y = 2/(D* +), ¢ & o/ (D? + i), om = 1.

1 begin

2 Initialize: x € RP, 0 €]RQ,C =1I,50 =0,s, =0.

3 while not TerminationCondition() do

4 forkel,.../ A do

5 zp + N(0,I)

1

6 X x+0C2 Xz

7 P « SelectBest (j1, {z, f(x))|1 <k <A}

8 s¢ (1 —co)se + /o (2 —co)\/Tw Z Wy zg // search path for o

z}€P
1
9 sc + (1 —cc)se +hor/ec(2—ce) /1w Z wC2 zp // search path for C
z3€P
10 0 o-expo/d (&—1) // update ¢
P Ewve D
T Y cEanT
1 Ce (I—cy+cy —cu)CHoeysest +cu Y wC2z(C2z) // update C
z}€P
1
12 X x+cuoCl Y wyzg // update x
L z}€P

13 | returnx

1 1 1
14 where hy = 1(||s¢|[2/D < 2+4/(D +1)), ¢, = c1(1 —h2)ec(2 — ¢¢), and C2 is the unique symmetric positive definite matrix obeying C2 x C2 = C. All c-coeficients
are < 1.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —34 / 38

CMA-ES Summary
CMA-ES is quasi parameter-free:

= It has a lot of internal parameters, but almost all of them are carefully set by the algorithm itself.
m The user has to specify only
m initial solution x,
m initial step size o, and
= the number of offspring A (but even that can be set based on the search space dimension).
CMA-ES Variants:
® Reducing the local search character of CMA-ES:
m [POP-CMA-ES: Restart CMA-ES several times, making the population twice as large each time.

s BIPOP-CMA-ES: Restart CMA-ES many times in 2 regimes: IPOP, and small-pop (spend similar number of evaluations in
IPOP and small-pop modes.

® Reducing the number of parameters to be adapted:
= L-CMA-ES: Smaller memory requirements, suitable for high-dimensional spaces, limited adaptation.
m Learning from unsuccessful mutations:

m Active CMA-ES: negative weights allowed during covariance update. Gotcha: C may lose positive definiteness!

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —35 / 38

17

Relations to other algorithms

Estimation of Distribution Algorithms (EDA):

®m CMA-ES can be considered an instance of EDA.
m EDAs template: sample from probabilistic model, and update model based on good individuals (i.e., the same as CMA-ES uses).

Natural Evolution Strategies (NES):
m NES proposed as more principled alternative to CMA-ES.
Information Geometric Optimization (IGO):

= Framework unifying many successful algorithms from discrete and continuous domains.
s CMA-ES and NES (and many EDA variants, see the next lecture) can be derived as special instances of IGO.

Idea: the update of all distribution parameters should be based on the same fundamental principle.

Later it was found that CMA-ES actually implements the underlying NES principle.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —36 / 38

Summary 37 /38

Learning outcomes
After this lecture, a student shall be able to

perform the mapping of chromosomes from binary to real space when using binary encoding for real-parameter optimization;

describe and exemplify the effects of such a genotype-phenotype mapping on the neighborhood structures induced by mutation
and crossover;

give examples and describe some mutation and crossover operators designed for spaces of real number vectors;

explain the main features of ES and differences to GAs;

explain the notation (y/pTA)-ES;

describe the differences between mutation with isotropic, axis-parallel, and general Gaussian distribution, including the relation
to the form of the covariance matrix, and the number of parameters that must be set/adapted for each of them;

explain and use two simple methods of mutation step size adaptation (1/5 rule and self-adaptation);
write a high-level pseudocode of CMA-ES and describe CMA-ES in the (y/p}A) notation;
implement DE algorithm;

explain the basic forms of DE mutation and crossover.

P. Posik (© 2022 AOMB33EOA: Evolutionary Optimization Algorithms —38 / 38

18

	Introduction
	Real EAs
	Contents

	Binary EAs
	Mapping example
	Geno-Pheno Map
	Bit-flip mut.
	1p xover
	2p xover
	Summary

	Real EAs
	Operators for real EAs
	Standard operators
	Advanced operators
	G3
	Summary

	Evolution Strategies (ES)
	Intro
	Pipeline
	Question
	Gaussian Mutation
	Adaptive Mutation
	1/5 rule
	Self-adaptation
	Issues
	CMA-ES
	CMA-ES Demo
	CMA-ES Code (1)
	CMA-ES Code (2)
	CMA-ES Code (3)
	CMA-ES Code
	CMA-ES Summary
	Relations

	Summary
	Learning outcomes

