Lecture 8: MCTS and AlphaGo

Viliam Lisy & Branislav Bo%ansky

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy©fel.cvut.cz

April, 2024

Viliam Lisy & Branislav BoSansky

Remind the test!

Viliam Lisy & Branislav BoSansky

Plan of today's lecture

@ Monte Carlo Tree Search

@ Overview of basic improvements
© The challenge of computer Go
© AlphaGo

Viliam Lisy & Branislav BoSansky

Recap.: Solving the Two-Player Games

Similarly to deterministic uninformed
search, we can use a depth-first
search algorithm. For a history h:

MAX

" /w X @ if his a terminal history
(h € Z), then return u(z),
MIN
@ if his a decision node, evaluate
X1 Y1 X2 Y2 X3 Y3

all children v, = search(A(h))
and

@ if h € Hy, return max,ca(h) Va
@ if h € Hy, return min,camp) Va

This baseline algorithm is known as minimax algorithm or simply a
backward induction in two-player perfect information games.

The utility of player 1 when both players play optimally is called
the value of the game.

Viliam Lisy & Branislav BoSansky

Games are BIG

The number of reachable states:
@ Chess: ~ 10%° 194 1023
o Go: ~ 10170 19170 1085

Can't we just prune most of the states out?

For a game with branching factor b and depth d, a3-search will
evaluate at least b%/2 = /b9 nodes.

The compute capacity of 100 largest clusters in the world
combined in Nov 2023': 6.7 x 10’8 FLOPS
With 10 FLOPS per state, chess would need > 10% ~ 12 days.
For Go, it is = 10°0 years. (The universe is ~ 14 x 10° years)

https://www.top500.org/lists /top500/list /2023 /11 /

Viliam Lisy & Branislav BoSansky

https://www.top500.org/lists/top500/list/2023/11/

Depth-limited game solving

Root = vermeesmerEess
i 0]
; SH
|
|
:
h i <A b
; At eH
N [Tl Pl
Stl” 10170 A-{/;/zhrunxx.lulunn.-n’;nv
nodes! o will win/

Terminal nodes

Sometimes very hard to make a good heuristic evaluation.

Viliam Lisy & Branislav Bosansky

Monte Carlo Tree Search

Idea:

© Instead of evaluation function, use random roll-outs
(simulations) of the rest of the game

© Store detailed statistics only in relevant parts of the game tree

Repeated X times
t{ Selection }—>{ Expansion }—>{ Simulation |—>{ Backpropagation ’j

The selection function is
applied recursively until
a leaf node is reached

One or more nodes
are created

One simulated The result of this game is
game is played backpropagated in the tree

(Image from Chaslot et al. 2007)

Viliam Lisy & Branislav Bosansky

i YHM x

Monte Carlo Tree Search - Demonstration

Expa

Simu

L Backpro

— Selection

nsion

lation

pagation

Viliam Lisy & Branislav BoSansky

MCTS Selection

We want to explore the more promising actions more often
We want to learn which actions are the most promising

Does it sound familiar?

Exploration vs. exploitation dilemma
Any algorithm for the multi-arm bandit problem can be used
MCTS + UCB = UCT - the most popular MCTS variant

log N¢(s)

Ac(s) = arg max [Qt(s, a)+c Ne(s,2)

Where s is the node in the tree where we perform the selection.

Progressive strategies start with domain knowledge and gradually
change to learned knowledge.

Viliam Lisy & Branislav Bosansky

https://link.springer.com/content/pdf/10.1007/11871842_29.pdf

MCTS Expansion

The part of the search space storing the statistics is expanded
@ all actions may be added
@ a single state-action may be added

@ a node may be expanded only after visited multiple times

Progressive widening
@ games may have many actions — Go (192), Arrimaa (= 20k)

@ a single state-action may be added at a time
e PW:

o start with few (heuristically chosen?) actions initially

add more once the previously added are explored sufficiently
works even in with infinite number of actions

keep k = [C - N(s)*] actions with 0 < v < 1

o
o
o
e studied in bandit literature on infinitely many armed bandits

Viliam Lisy & Branislav BoSansky

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=966b8c5b01f1eb4b7bb8f4a83ba3f1f1879f5250

MCTS Simulation and Backpropagation

Simulation: choose actions based on fast policies until game ends
@ purely random surprisingly effective
@ hand-coded knowledge

@ learned knowledge

Backpropagation: update statistics used by the selection
@ N(s),N(s,a)
e Q(s,a)
@ whatever — rewards range, variance, Q(a), etc.

@ each player stores his perspective vs. min / max

Viliam Lisy & Branislav Bosansky

https://dl.acm.org/doi/pdf/10.1145/1273496.1273531

MCTS Is useful even in non-game setting

First developed and popularised in games

Everything works as well with single player
PROST, POMCP, etc.

More on it in B(E)4M36PUI — Planning for Artificial Intelligence

Further reading on MCTS
@ RL Introduction (Book) — Section 8.11

@ Browne, C., Powley, E., Whitehouse, D., et al. 2012. A survey
of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and Al in games, 4(1), pp.1-43.

Viliam Lisy & Branislav BoSansky

http://incompleteideas.net/book/the-book.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6145622
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6145622

)
=
=5
2
8%
T D
5 8 SE 3
28 11000 z
=3 3
S @ 2
T .= o
m s 5 - E
=2 D@) = 6 g
228 | 6808666 68 :
El i [Loe82 9900 99
Ow < mf =
pal
£

(@)
O
[

(@)

()

£

o)

o1}

()
=
_I

The challenge of Go

Following DeepBlue's victory in 1997, Go was the next challenge
@ branching =35 —=~ 350
@ game length =~ 57 moves —~ 300 moves
@ popular: 4000+ years old and =~ 27M players worldwide

Beginner Master Professional
5 d:: ;U kyu 1 kyul '1 dan 7 danl I1 dan Bdanl
2 dan
1dan
. * pre-MCTS approaches
2kyu 1 MoGo FuegotyanyEaced™
3k M}rcﬁf g ManyFaces Gelly, S., Kocsis, L., Schoenauer, M.,
4l Manyfac Sebag, M., Silver, D., Szepesvari, C.
™ and Teytaud, O., 2012. The grand
6l / challenge of computer Go: Monte Carlo
7hyu | tree search and extensions. Communi-
Shyu [Mohsy cations of the ACM, 55(3), pp.106-113.

Jul08 Jan07 Jul07 Jan08 Jul08 Jan09 Jul03 Jan10 Jull0 Jan1l

Viliam Lisy & Branislav Bosansky

AlphaGo

3,500
3,000
2,500 e I
2,000

1,500

Elo Rating

Atlast —a computer program
can beat a champion Go playe

ALLSYS TEMS GU

500

ar > T O N v M
gz 8 g8 g g ¢ =
38 8 T < Z 8 9 w\(lw:\ AFEGUARD WHEN GENES
2o ® £ o 3 NCARTE TRANSPARENCY GOT-SELFISH
a o © 8
Q =1

@

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, ., Panneershelvam, V., Lanctot, M. and Dieleman, S.,
2016. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587), pp.484-489.

Viliam Lisy & B

https://www.nature.com/articles/nature16961.pdf

AlphaGo

@ Use MCTS as the base algorithm

@ Capture the existing human knowledge in a policy p,(als)
@ Learn a fast simulation policy p,(als) for rollouts

@ Use RL techniques to optimize policy p,(als) in self-play

@ Use RL to learn a value function v(s)

@ Guide MCTS by policies and combine simulations with v

Viliam Lisy & Branislav BoSansky

AlphaGo — learning policies

Supervised learning of human policy
e Data: (sj, a;) for 30 million positions from KGS Go Server
@ Stochastic Gradient Ascent maximizing E;log p,(ai|si)
@ Final prediction accuracy was 57%

@ 1000x faster roll-out policy p, trained the same achieved 24%
accuracy

Improving policy in self-play
o Initialise p, by p,
@ Play one match si,...,s7 and receive outcome z € {—1,1}
@ Use SGA to maximize E;. 7 log p,(at|st)z

@ Eventually p, wins over p, in 80% of games

Viliam Lisy & Branislav Bosansky

AlphaGo — learning value function

The goal is to estimate state value under policy p,:

vPr(s) = Elz|s; = s,as..1 ~ ppl

e Data: (sj, z) for 30 million self-play games (one per game)
@ Use Stochastic Gradient Descent to minimize E;(v(s;) — z;)?

@ Resulting v consistently more accurate than p; rollouts

Viliam Lisy & Branislav BoSansky

AlphaGo — search

Selection:

[Pr (alse) N(»))

s gt + 50

Expansion:
“leaf node may be expanded” hence, likely not always
Simulation:
The result of the value function and simulation z ~ p, is combined

V(st) =(1—MNv(s) + Az

Backpropagation:
For all visited (s, a;)
N(s¢, a¢) +=1

Viliam Lisy & Branislav BoSansky

AlphaGo — results

AlphaGo won 494 /495 matches against the existing programs
AlphaGo won 5 — 0 against professional European champion

Larger distributed version on 1202 CPUs and 176 GPUs

3,500
Observations: a0

2,500

@ All components are important —

2,000+

@ AlphaGo evaluated thousands

1,500

times less positions than DeepBlue 10001
@ 10 years earlier than expected %01
ol
@ Human policies still helped in 2015 Folos e o« e .
Value network @ e o o
Policy network @ L] L] L]

Viliam Lisy & Branislav BoSansky

Further advancements

AlphaGo Zero (2017)

@ No human knowledge

AlphaZero (2018)
@ No simulation

@ Chess: 9 hours, shogi: 12 hours, Go: 13 days

MuZero (2020)

@ Not even game rules are necessary

Student of Games (2023)

@ Many imperfect information games

All imperfect information games?

Viliam Lisy & Branislav BoSansky

https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphazero-shedding-new-light-on-chess-shogi-and-go/alphazero_preprint.pdf
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.science.org/doi/10.1126/sciadv.adg3256

Common games are large
If you can create a good evaluation function, use a8 variants
If it is hard to provide evaluation function, use MCTS

If you do not mind a lot of training, combine MCTS with learned
policy and value functions

Playing perfect information games is mostly a solved problem
Playing imperfect information games is getting there

However, it currently requires huge about of compute
(1000 TPUs for months with Stratego)

Viliam Lisy & Branislav BoSansky

