Lecture 12: Sequential Decisions with

Partial Information (POMDPs)

Viliam Lisy & Branislav Bosansky

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy®©fel.cvut.cz, bosansky@fel.cvut.cz

May, 2021

Viliam Lisy & Branislav Bo3ansky

What we already know?

What we already covered:
o finding optimal plan
@ search-based (A*) / learning-based (RL) / sampling-based
(MCTS) approaches
@ uncertainty

The main formal model for us was Markov Decision Process
(MDP).

Unfortunately, the world is not perfect — agents often do not have
perfect information about the true state of the environment
— Partially Observable MDPs (POMDPs).

Viliam Lisy & Branislav Bo3ansky

Motivation for POMDPs

Many practical applications naturally fit to the POMDP class:
@ more realistic
e agents often receive partial information about the true state
(observations) rather than complete states
@ in robotics, the exact location of the robot in the environment
is typically not known
e sensors are imperfect (there is always some level of
noise/uncertainty)
e actions are imperfect
@ security scenarios (assuming fixed strategy of the opponent)

o agents typically do not know the effects of the actions of the
opponent (which computer has been infiltrated by an attacker)

Viliam Lisy & Branislav Bo3ansky

Definition POMDPs

Recall the definition of POMDPs — We have a finite sets of states
S, rewards R, and actions A. The agent interacts with the
environment in discrete steps t = 0,1,2,.... At each timestep, the
agent has a belief — a probability distribution over states that
expresses the (subjective) likelihood about the current states.

The agent receives observations from a finite set O that affect
the belief. The agent starts from an initial belief and based on
actions and observations, it updates its belief. Given the current
belief b : & — [0, 1] and some action a € A and received
observation o € O, the new belief is defined as:

b(s') = pO(ols’,a) - Y Pr(s'|s,a) - b(s)

seS

where p is a normalizing constant.

Viliam Lisy & Branislav Bo3ansky

POMDP — Example

#

FH I
«~ 3 o3k
H# 3*
#*¥#* 3

F I I

#H#H A

The robot can now perceive only its surroundings but does not
know the exact position in the maze. States and actions remain
the same.
es=(X,Y,d G)
@ actions = (move_forward, move_backward, turn_left,
turn_right)

Observations are all possible combinations of walls / free squares
in the 4-neighborhood (in front, right, behind, left):

o (7, #,#, #), (#. #, 4), - -

Viliam Lisy & Branislav Bo3ansky

Beliefs in POMDPs

So how exactly we compute the beliefs!:

a = forward, o = (#, -, -, #)
current beliefs b; new beliefs b;y1

H# # # # # # #
G 025 025 # # G 05
#o,# #H#FH
#
0.25 0.25 # # 05
H## # # # # #

for s' = (1,1,<,.), it holds
b;+l(5/) = O(O‘Slv 3)) Pr(5l|a7 (27 17 < *)) : bf((zv 17 < *))

bi1(s')=1-1-0.25

AN / / _ 1
and then byi1(s") = pbiy1(s’) where p = by 1 (1,1, <)) +b], 1 ((4,4,>,0)

!Coordinates (0,0) are in the bottom left corner.

Viliam Lisy & Branislav Bo3ansky

How to act optimally in MDPs

Recall a value function for an MDP and a policy =
Vet S — R

is a function assigning each state s the expected return
vz(s) = E, Gy obtained by following policy 7 from state s.

Optimal policies share the same optimal state-value function:
vi(s) = maxvy(s) forall se€S
™
Any policy that is greedy with respect to v, is an optimal policy.

7.(s) = arg m;xz p(s’,rls, a) [r+ yvi(s)]

s'r

Viliam Lisy & Branislav Bo3ansky

How things change for POMDPs?

Which action is optimal depends on the belief over states:

#
G >(05)
#
#
< (05)

#

Consider 2 actions — move backward and turn right
@ move backward is better for the state (4,4, >,)
@ turn right is better for the state (1,1, <,)

The value of each action depends on the exact belief — value
function also depends on beliefs.

Viliam Lisy & Branislav Bo3ansky

Value function for POMDPs

A value function for a POMDP and a policy 7
ve : A(S) = R
Can we update Bellman equation to use beliefs? Yes!
Vie(b) = m;ax/p(b', rlb, a) [r +yvi(b)] db’

... the “only problem” is that b is a continuous variable
— computing optimal value function in this form is not practical.

Viliam Lisy & Branislav Bo3ansky

Representation of Value Function

Using beliefs, we have formulated an MDP with a continuous
set of states.

Discretization of beliefs is not very practical due to high dimension

(IS1)-

Consider the Bellman equation again — what is our goal?
vi(b) = maax/p(b’, r|b,a) [r+ yvi.(b)] db’

Find the best action (and value) for each belief point.

There is infinitely many belief points, but the set of actions A is
finite!

Viliam Lisy & Branislav Bo3ansky

Representation of Value Function — « vectors

If we fix an action a € A, the value function (for that action) is a
linear function in the current belief. These linear functions are
called a-vectors.

For each belief point, we take the best action hence we maximize
over all a-vectors:

value

v(b) = maaxz afs) - b(s)

seS

belief (simplex)
a-vectors are in fact more general — they represent expected
value for a policy (contingency plan consisting of multiple steps).

Viliam Lisy & Branislav Bo3ansky

Using a-vectors in value iteration

Using a-vectors corresponding to the value functions of currently
considered policies, we can compute new value (next iteration):

o0€0 r,s,s’

ver1(b) = max {Z max [Z up(s’, rls,a)b(s)O(ols’, a) (r + 70/(5’))] }

... but how do we construct a-vectors from v;117?

© assume there are a-vectors o/ representing values of policies
in step t

© in step t + 1, we choose some action and then, based on the
observation, we follow with some of the policy corresponding
to o/ from v; (different observation leads to a different belief)

© for example, choose action a3 and then

e if 0y is received, use value of o (i.e., this value is achievable
via some policy corresponding to this a-vector)
e if 07 is received, use value of a}

Viliam Lisy & Branislav Bo3ansky

Tiger example

Let's consider the best-known POMDP example — a tiger problem:
There are 2 doors hiding a treasure or a tiger. The agent does not
know where is the tiger and where is the treasure. The agent can
gather observations (listen) or open one of the doors.

=

@ states — {tiger_left(TL), tiger_right(TR)}
@ actions — {open_left, open_right, listen}
@ observations — {hearTL, hearTR}
@ rewards —
e —1 for any listening action (in all states)

o +10 for opening the door with treasure
e —100 for opening the door with tiger

Viliam Lisy & Branislav Bo3ansky

Tiger example

states — {tiger_left(TL), tiger_right(TR)}
actions — {open_left, open_right, listen }
observations — {hearTL, hearTR}

rewards —

e —1 for any listening action (in all states)
e +10 for opening the door with treasure
o —100 for opening the door with tiger

e initial belief is uniform — by(TL) = bo(TR) = 0.5
@ transition dynamics —

e performing action listen does not change the state
e opening a door “restarts” the problem (i.e., p(s’|s,a) = 0.5 for
both states s’ € { TL, TR}).

observation probabilities —

e listening action generates observation hearTL/TR with a 15%
error — i.e., agent chooses action a = listen, then
O(hearTR|a, TR) = 0.85 and O(hearTR|a, TL) = 0.15.

Viliam Lisy & Branislav Bo3ansky

Tiger example

What are the optimal actions (1-step policy)?

T W

10 / open-left
-1 listen
s
>
Q
=
g
-100 / \ open-right

0.0 p(tiger-right) 1.0

Viliam Lisy & Branislav Bo3ansky

Tiger example

Choosing action listen is not sufficient — what should we do
next?

Depending on the observation, the belief will change:
@ assume bo(TR) = bg(TL) = 0.5, a = listen, and o = hearTR
@ now bi(TR) = 0.5-0%?,}% =0.85
Since 0.85 € [0.1,0.9], after one observation the next optimal
action is still listen.

In general, the chosen actions in policies depend on received
observation, for example (a 2-step policy):
o listen

o if (observation is hearTR — open_left)
o else if (observation is hearTL — listen)

Viliam Lisy & Branislav Bo3ansky

Tiger example

What do the a-vectors corresponding to 2-step policies look like?

€3 Ca &3 €9 €

TR TR,TL

TLTR TL

L_JL_JL_J

TL TR —]
o)
i |_—1 TL TR
s

TL TR

p(tiger-right)

Viliam Lisy & Branislav Bo3ansky

Exact value iteration in POMDPs

In exact (full) value iteration in POMDPs, |V;| = |A| - | V1|
new a-vectors are generated in each step of the algorithm.

It is clear that such approach will not scale well. Pruning
dominated a-vectors is possible but does not solve the issue.

Observation

We do not need to compute all a-vectors — large portion of belief
space is (often) not reached hence not relevant for solving the
problem.

We can keep only a bounded number of belief points and for each
belief point we keep 1 (the best) a-vector.

Viliam Lisy & Branislav Bo3ansky

Point-based updates and point-based value iteration

(PBVI)

Let B = {b',b?, ...} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set
of belief points:
@ instead of adding all a-vectors, only the a-vectors that are
optimal in some of the belief points from B are kept,

Comparison of generated a-vectors for full VI and PBVI for tiger example after
30 iterations (from slides of M. Herrmann, RL 13).

Viliam Lisy & Branislav Bo3ansky

Point-based updates and point-based value iteration

(PBVI)

Let B = {b',b?, ...} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set of
belief points:

@ the set of belief points B can correspond to a uniform
coverage of the belief space or the points can focus on more
relevant parts of the belief space

(a) uniform (b) non-uniform
density reflecting
discounted

reachable, reachability

Viliam Lisy & Branislav Bo3ansky

Scaling-up solving POMDPs
@ more scalable VI-based algorithms
@ using MCTS-like algorithm for solving POMDPs
e from POMDPs to Il games and DeepStack (poker)

Viliam Lisy & Branislav Bo3ansky

