Lecture 9: Constraint Satisfaction Programming

and Scheduling

Viliam Lisy & Branislav Bosansky

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

bosansky®fel.cvut.cz

April, 2024

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Overview

What we have covered so far:
@ (un)informed search
@ reinforcement learning

@ two-player games

In all these problems, we have not assumed that states of the world
have some specific structure.

What if we restrict the structure of the states? \

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Overview

What if we restrict the structure of the states? \

@ — we lose generality (not every problem could be represented)

@ + we gain performance (we will be able to solve much larger
problems)

We can identify and solve (exactly!) instances of a subclass of
problems and improve scalability by several orders of magnitude
compared to standard search algorithms.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



N-Queens Example

Consider an N-Queens problem: Place on a chessboard of size
N x N squares N queens so that no two queens threaten each
other. For N = 4:

What would be the state representation?

@ N coordinates (one tuple of coordinates
for each queen)

@ N numbers (every queen has to be in a
different column, we can only represent
rows)

Action changes position of one (or more) queen.

Differences from previous (general) problems:
@ there is no start state (we can start from any state), hence

@ the path to the goal state is not interesting, only the goal
state itself

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Constraint Satisfaction Problems (CSPs)

The class of problems that include the N-Queens problems are
known as CSPs (subclass of NP-complete problems).

CSPs are defined by 3 finite sets:
@ variables (x1,x2,...,xp)
o domains (D; for each variable x;)
@ constraints (¢1, ¢, ..., Cm)

A constraint is specified as a tuple of
@ subset of variables x; , ..., x;

@ all allowed joint assignments (/-tuples from Dj,, ..., D;)

Goal: find such an assignment values to variables that satisfy all
the constraints

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Constraint Satisfaction Problems — Examples

Many problems can be repre- gt
sented as CPSs. These include 5 {s°5 1 SEND
known puzzles: 12 6 + MORE
[T lalt]s /5| MONEY

[+ SUdOkU, 8 709

o Cryptaithmetic,

essential NP problems:
e SAT,
@ Graph Coloring,

and many practical problems:

@ Scheduling

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



N-Queens Example as a CSP

We can formulate N-Queens problem as a CSP:

@ variables: xi,...,xy (one variable for each queen, queen i is
placed in the i-th column)
@ domains: D; = {1,..., N} (the row in which the queen is
placed)
@ constraints:
o X # X Vije{l,...,N},i#]j

(some solvers support global constraint
alldifferent(xi, ..., xn))

o |xi —xj| #|i—j| Vi, je{l,... ., N} i#j

How do we search for a solution? \

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Search Tree for CSPs

We use (uninformed) search as we know it (for now) and represent
the search space as a search tree.
What are the nodes and actions in the search tree for a CSP?

@ Nodes in the search tree — (partial) assignment of values to
variables,

@ Edges — choosing an unassigned variable and assign a value
to this variable.

; x
FONNN

During the assignment, the / -
algorithm must check whether / \\
the assignment does not violate

constraints. ! /

i
W
Sa

sont
e
s

=7

If there is no satisfying assign- &~
ment, the algorithm backtracks.

Viliam Lisy & Branislav Bo3ansky

Introduction to Artificial Intelligence



Standard Representation of CSPs

We now move to specific CSP algorithms. Many of them assume
only binary constraints.

Is it a problem? Is it a subclass of CSP problems?

Not really, we can reformulate any k-ary constraint as a set of
binary constraints:

@ Assume there is a constraint ¢ involving k variables. Let I be
the set of all k-tuples that satisfy this constraint.

@ Create a new variable x. with the domain I and create k
binary constraints with involved k variables, such that i-th
item of the value of x. equals to value of the variable i.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Standard Representation of CSPs — Visualization

Having only binary constraints, we can visualize CSPs as graphs:
@ variables are vertices in the graph,
@ constraints are edges in the graph.

There is an edge connecting two vertices if there is a constraint
between these variables.

x_1={1,234} x_2={1,2,3,4}

x_3={1,2,34} x_4={1,234}

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



CSP Search and Propagating Constraints

Can we utilize the fact that we have a specific structure of the
problem?

The simple search checks the constraints only in a passive way.
We can propagate the values to other variables. Every time we set

a value for some variable, we can filter out values of other variables
that do not satisfy constraints — forward checking:

x_1={1} x_2={1,2,3,4} x_1={1} x_2={3,4}

x_3={12,34} x_4={12,34} x_3={24} x_4={23}

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



CSP Search and Propagating Constraints

Assume the search algorithm selects a value for variable x;. Now:

@ for every other variable x; such that there is a constraint ¢j;
between x; and x;, we evaluate all available values from D;
and keep only those that satisfy ¢j;

How is the forward checking integrated into the search algorithm?
@ the algorithm keeps available values for every variable

o if for any variable its domain is empty after the forward
checking, the algorithm immediately backtracks

First heuristic — minimal remaining value (MRV).

So far, there was no rule which variable to choose next in the
search tree. MRV heuristics is a fail-fast heuristic that can quickly
prune out dead-ends.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Search with Forward Checking

pseudocode of the search algorithm:

o if all variables are assigned then return current assignment
(solution)

@ x; < ChooseVariable(X, D)

@ for each v € D;

assign x; = v

valid = ForwardChecking(X, D, i, v)

if valid then search(X,D)

undo local assignments

@ return false

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Towards a Better Use of Constraints

Forward checking ensures that there are supporting values in
domains of other involved constraints.

The algorithm removes those values that do not satisfy the
constraints.

But this can violate some other constraints ... Is there a way we
can ensure that every constraint can be satisfied (termed
consistent)?

Yes! We can have an algorithm that makes every edge (constraint)
consistent.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Arc Consistency

Making one edge (arc) cj; consistent:
@ deleted = false

o for each v € D;

o supported = false
o for each v/ € D;

if ¢;(v,v’) then supported = true
o if not supported then

remove v from D;

deleted = true

@ return deleted

The procedure checks one constraint (in a directed manner) and
returns true if some value was removed from domain D;.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Arc Consistency — AC-3

Assume the algorithm has set value for variable x;. We need to
make consistent all incoming edges to node i (constraints that
depend on this selected value). Next, if some value is removed
from any variable x;, we need to do the same for node j.

We will have a queue Q of all edges to make consistent:
o Q={(,) ¢ eC, i#j}
o while Q is not empty

e (a,b) = pop(Q)
o if MakeConsistent(a, b) then

append(Q,{(k,a) | cka € C, k # a})
This algorithm is known as AC-3.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



AC3 Algorithm — Example

Step 1: making consistent all edges (n,1) for n = {2, 3,4}

x_1={1} x_2={1,2,3,4} x_1={1} x_2={3,4}
x_3={12,34} x_4={1234} x_3={2,4} x_4={23}

Step 2: making consistent all edges (n,2) (AC3 deleted from D»)

x_1={1} x_2={3,4}

x_3={2} x_4={2,3}

Value 4 is removed from Djs since it is not supported by any value
in D2.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



AC3 Algorithm — Example

Step 3: making consistent all edges (n, 3)

x_1={1} x_2={4} x_1={1} x_2={4}

x_3={2} x_4={23} x_3={2} x4={

Value 3 is removed from D> since it is not consistent with x3 = 2.

Next, all values in D4 are removed since neither of them is
consistent with x3 = 2 — no solution!

The AC3 algorithm can determine after the first assignment x; =1
that this action does not lead to goal.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



AC3 Algorithm

Does AC3 solve everything? Do we still need search? \

Unfortunately, AC3 is not able to guarantee there exists a solution.
If AC3 prunes out some domain, the search algorithm can safely
backtrack. Otherwise, the search needs to continue.

=
x_1={1,2) X 2={12)

x_3={1,2}

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Other Interesting Search Improvements in CSP

Least Constraining Value
Another heuristic for CSPs — among all the values to be assigned
to a variable, choose such that supports the most other values.

Backjumping

Inability of choosing valid value for one variable can be caused by a
choice of a variable up in the search tree. — The algorithm can
identify which variables cause the conflict and can backtrack
immediately to this conflicting variable (jumping back).

Dynamic Backtracking

In backjumping, the assignment between two conflicting variables
is lost if we jump (even if it was a good one) — dynamic
backtracking can dynamically choose which variable to assign (or
re-assign) so that partially valid solutions are not lost.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



Constraint Optimization Problems (COPs)

Constraints in CSPs are hard constraints — they need to be
satisfied to find a solution.

Often, not all constraints have to be hard — we can combine CSPs
with an objective function representing soft constraints.

For example in scheduling — we cannot plan execution of two jobs
on a single machine (hard constrain) but we want to minimize time
required to finish all the jobs (objective function).

After finding a solution, we can keep it and continue searching —
current solution is a lower bound on the optimal value (if we
maximize), hence we can add additional pruning — branch and
bound (similar to alpha beta pruning).

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence



CSP

There are many additional modifications and improvements
regarding CSP.

There are many solvers that you can use.
Again, the ideas from CSP algorithms can be used also elsewhere
(using specific structure to prune out not perspective branches,

exploiting locality of partial solution in dynamic backtracking, etc.)

A good source for a quick reference — CSP course at MFF CUNL.

Viliam Lisy & Branislav Bo3ansky Introduction to Artificial Intelligence


http://ktiml.mff.cuni.cz/~bartak/podminky/

