Lecture 2: Formal Models of Al Problems and

Search

Viliam Lisy & Branislav BoSansky

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

bosansky@fel.cvut.cz

February, 2024

Viliam Lisy & Branislav Bo3ansky

Key Points of the Lecture

@ Why we are talking about search at all?
@ Why it is good to have a formal representation of a problem?

@ Provide a more unifying perspective on different algorithms.

Many (even recent) great Al breakthroughs use search as one of
the components.

DeepStack

15,750
D ¥ |OpeepMind
@ f s ii:r V)

1,200 o

® q 34

Viliam Lisy & Branislav Bo3ansky

Search and Al

Search is one of the most fundamental and universal method for
solving problems.

Having a formal representation of the problem, search algorithms
allow us to look for a solution in a systematic way:

@ formal representation of every possible situation in the
scenario — the states of the problem (denoted S)

@ how the states can be changed by the algorithm (agent) — the
actions in the scenario (denoted A)

By applying an action a € A to a state s € S, the state will change
to a different state s’ € S.

States must contain all information necessary to determine
applicable actions, transformation of the environment, or whether
the goal has been reached.

Viliam Lisy & Branislav Bo3ansky

Search and Symbolic Reasoning in 2024

Search is used even in today's most recent results with large

language models (LLMs

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article | Open access | Published: 17 January 2024
s

demonstrations

g olympiad g ry without

Triew H. Trinh ©, Yuhuai Wu, Quoc V. Le, He He & Thang Luong ™

Fig.2:

We pretrain a language model on all generated synthetic data and fine-tune it to focus on
auxiliary construction during proof search, delegating all deduction proof steps to
specialized symbolic engines. This follows standard settings in the literature, in which
language models such as GPT-f (ref. 19), after being trained on human proof examples, can
generate exogenous proof terms as inputs to fast and accurate symbolic engines such as
nlinarith or ringZ18, using the best of both worlds. Our geometry theorem prover

state of geometry theorem prover from

Yy

below human level to near gold-medallist level.

Number of solved problems

30

20

Number of solved problems in IMO-AG-30

Average IMO
contestant

Previous Honorable Bronze Siver AlphaGeometry ~ Gold
state of the art mentions medallist medallist medallist
(Wu's method)

Example 1 — 8 puzzle

1 2 11213

4153 — 4156

7186 7|8
current state = — goal state

Goal: rearrange the numbers by moving the empty square to
adjacent squares so that the numbers are ordered

Possible representations:

@ values of tiles in a sequence
s=11,.,2,4,5,3,7,8,0]

@ position of numbers
s=11,3,6,4,5,9,7,8]

Viliam Lisy & Branislav Bo3ansky

Example 1 — 8 puzzle

problem to be solved by a search algorithm?

ChatGPT

A common formal representation for the 8-puzzle problem involves usin te space

representation. Each state in the state space represents a configuration of the puzzle, and the
tates represent moves made to transform the puzzle from one configuration

atypical representation:

1. State Representation: Each state is ted as an arrangement of the tiles on the puzzle

board. Usually, this is done using an 3x3 grid where each cell can hold a number (1 through 8) or
be empty. For

Here, ' represents the empty space.

Initial State: Represents the starting configuration of the puzzle.
Goal State: Represents the desired configuration that the puzzle should reach.

3. Actions/Operators: Represents the possible moves that can be made from a given state. In the

case of the 8-puzzle, these are typically moving atile into the empty space either up, down, left,

orright.

Transition Model: Describes the effect of each action on the current state, leading to anew state.

Cost Function: Defines the cost associated with reaching one state from another. This could be a
nt cost for each move or vary depending on factors like the distance moved.

Heuristic Function (optional): Estimates the cost of reaching the goal from a given state.

Common heuristics for the 8-puzzle include the Manhattan distance or the number of misplaced

il

With this formal representation, you can apply various search algorithms such as Breadth-First
Search, Depth-First Search, A* Search, etc, to find the optimal or near-optimal solution to the
8-puzzle problem.

Example 1 — 8 puzzle

ChatGPT
define the 8-puzzle problem formally:

¢ space S represents all pos: s of the puzzle. Each
uration is a permutation of the numbers 1through 8, plus an empty space (represented as
0orany other distinct symbol).

where s; represents a specific state of the puzzle.

2. Initial State (s₀): The initial state is the starting configuration of the puzze.
50

Goal State (G): The goal state is the desired configuration of the puzzle.

Actions (A): The actions define the possible moves that can be made in the puzzle. In the case of
the 8-puzzle, these actions are moving the empty space (0) either up, down, left, or right,

provided the move is valid.
A= {'UP’,’DOWN’, LEFT’, RIGHT’}

5. Transition Model (T): The transition model describes the effect of each action on th

f the puzzle.

It represents the cost of reaching the next state from the current state by taking a particular
action.

Path Cost (g): The path cost function gives the total cost of reaching a particular state from the
initial state along a given path of actions.

g:8—
It represents the cumulative cost of the actions taken to reach a particular state.

With these formal definitions, we can apply various search algorithms such as A* search, breadith-
first search, or depth-first search to solve the 8-puzzle problem by finding a sequence of act
that transform the initial state into the goal state while minimizing the total cost.

lav Bo3ansky

Example 2 — Robotic arm

Find correct configurations of joints / parts of the arm so that the
arm catches a desired object.

Possible representations:

@ S = [91,041392’0[2’ ..]

Viliam Lisy & Branislav Bo3ansky

Example 3 — Chess

Possible representations:

@ positions of pieces on the board
s =[[A1,B1,C1,...,H2],[A8,..., HT7],...] — additional
information needed besides the board itself (king has moved,
rook has moved, repeated positions (!))

Alternatively, a history of played moves represents a state.

Viliam Lisy & Branislav Bo3ansky

Solution of a Problem

Many of the Al problems can be formulated as finding a sequence
of actions that leads to a goal state.

We want to find the best such a sequence
@ minimize the number of actions

@ every action can have some cost (or reward) associated with it
— minimization of total cost (maximization of total reward)

We can reason about possible states / effects of actions
(the rules of the environment are known (!)):

@ we have a formal model

@ (for the large scale) access to a simulator

Viliam Lisy & Branislav Bo3ansky

Main Al Models for (Sequential) Decision Making

There are several fundamental models when searching for optimal
sequence of actions based on searching through state space
(possibly uncertain effect of actions / stochastic environment):

@ Markov Decision Processes (MDPs)

o Partially Observable Markov Decision Processes (POMDPs)

o (Imperfect Information) Extensive-Form Games (EFGs)

o (Partially Observable) Stochastic Games (POSGs)

We introduce selected general models now to emphasize the
importance of the correct formalization of the problem. Selected
algorithms for solving them optimally will be introduced later.

Viliam Lisy & Branislav Bo3ansky

Main Al Models for (Sequential) Decision Making

There are several fundamental models when searching for optimal
sequence of actions based on searching through state space
(possibly uncertain effect of actions / stochastic environment):

@ Markov Decision Processes (MDPs) — perfectly observable
environment, only 1 agent is acting

@ Partially Observable Markov Decision Processes (POMDPs)
— partially observable environment, only 1 agent is acting

o (Imperfect Information) Extensive-Form Games (EFGs) —
perfectly (partially) observable environment, finite horizon,
n agents can act (every agent optimizes own goal /
utility)

o (Partially Observable) Stochastic Games (POSGs) —
perfectly (partially) observable environment, infinite horizon,
n agents can act (every agent optimizes own goal / utility)

Viliam Lisy & Branislav Bo3ansky

Markov Decision Processes (MDPs)

Consider (finite) sets of states S, rewards R, and actions A. The
agent interacts with the environment in discrete steps
t=0,1,2,.... At each timestep, the agent receives the current
state S; € S, selects an action based on the state A; € A. As a
consequence of taking the action, the agent receives a reward
Rey1 € R and find itself in a new state S;1.

Rewards and states are generated based on a dynamics of the MDP
p(s',r|s,a) < Pr{S; =s' Ry = r|St_1 = s5,A;r_1 = a}
The next state depends only on the current state and the action

(Markov property). In the first lectures/labs, we assume that
the environment is deterministic.

Transition and reward dynamics can be defined separately.

Viliam Lisy & Branislav Bo3ansky

Markov Decision Processes (MDPs) — Example

#o# H# HH#HH
G
#o#HH #
L ##
#
A R N

Consider a robot (|) in a maze (# are walls), the arrow represents
the direction the robot is facing, G is gold.
What are the states and actions?

es=(X,Y,d G)
@ actions = (move_forward, move_backward, turn_left,
turn_right)
MDP dynamics:
e p((1,1,],false),0| (1,2,],false), move_forward) = 1
e p((1,1,],false),0 | (1,2,],false), move_backward) = 0
° ..

Viliam Lisy & Branislav Bo3ansky

Markov Decision Processes (MDPs)

Why do we need some generic formal description?

@ we will have a well-defined problem (inputs / outputs for the
algorithm)

@ formalization helps to think about the problem (e.g.,
formalizing the dynamics)

@ we can reuse existing algorithms

o if we design and implement a brand-new algorithm for MDPs
(POMDPs / EFGs / ...), we can solve (almost) all instances

Viliam Lisy & Branislav Bo3ansky

Markov Decision Processes (MDPs

What if we have a problem, where there is a group of robots that
need to collect rock samples. How the formalization can look like?

[T —
*E=(G,RS)

* G = (V, Eg) isagraph representing the environment where Vs the set of nodes.

locations.

7} isthe setofrobots, cach represented by their current position p inthe

»}Is the setof ock samples, each represented by their curret positon p;
inthe graph G.

Initial State:
* 5= (G, R
robots and s the inital positions of rock samles

Goaltate:

* 5, =(G,0,
5,C8).

Actions/Operators:

* A= {move(ri,v) | r: € R, € Adj(pi)} U {collect(ri, ;) | r: € R,s; € S,pi
I

* moue(ri,v) represents moving robot ; to adjacent node it s reachabie from tscurrent
positionp.

collect(ri, s

Transition Model:
* Resuli(s,a)

Cost Function

i ifthey areat

iting ina new state.

 Cost(s,a) instate s, which

7. Constraints:

€ ={e, e}
. h

movements or

constraints.
Sensing and Perception:

les, obstacles, or

making processes for actions

p of robots can

or multi-agent

Viliam Lisy & Branislav Bo3ansky

L. States (S)

iguration of the robots.

andthe remaining rock samples.
Actions (4):

samples.
3. Transition Probabilties (P(s'|s,)
* P(ss, a) represents the probablty of ransitioning from state s tostate after taking
actiona. 1 th

ityis it
and 0 otherwise.
I, Rewards (R(s, , 5))

* R(s,a,5)

moving, or zero otherwise.
Discount Factor (7):

P future rewards. It
typically ranges between 0 and 1.

w the robot
follows:

* StateSpace: § = {51, 52, .., s }, where V s thetotal number of possible configurations of
the environment

* ActionSpace: A = {a1,az, .., aar},where M isthe total number of possible actions that
robots can take

* Transition Function: P(s'[,) = 1ifthe transition from state s to tate ' by taking action a s
valid, and O othervise.

o R(s,a, ') assigns
&' by taking action . For example:
* R(s,a,s'

each transition from state s to state

10 ifaction @ results i collecting a ock sample.
* R(s,a, 5') = —1ifaction a results in moving the robot to an adjacent location.
* R(s,a,5) = 0otherwise.

preference for

With this formalization, we have defined the robot collection problem as an MDP, enabling the.

application of reinforcement learning algorithms or dynamic programming techniques tofind

16 /29

Partially Observable Markov Decision Processes

(POMDPs)

States, actions, and rewards are as before, however, the agent
cannot perfectly observe the current state.

The agent has a belief — a probability distribution over states that
express the (subjective) likelihood about the current state. The
agent receives observations from a finite set O that affect the
belief. The agent starts from an initial belief and based on actions
and observations, it updates its belief.Given the current belief
b:S — [0,1] and some action a € A and received observation

o € O, the new belief is defined as:

b(s") = nO(ols’,a) - > _ Pr(s'|s, a) - b(s)

seS

where (1 is a normalizing constant.

Viliam Lisy & Branislav Bo3ansky

POMDP — Example

#

FH I
«~ 3 o3k
H# 3*
#*¥#* 3

F I I

#H#H A

The robot can now perceive only its surroundings but does not
know the exact position in the maze. States and actions remain
the same.

es=(X,Y,d G)
@ actions = (move_forward, move_backward, turn_left,
turn_right)

Observations are all possible combinations of walls / free squares
in the 4-neighborhood:

o (7, #,#, #), (#. #, 4), - -

Viliam Lisy & Branislav Bo3ansky

Extensive-Form Games (EFGs)

Agent is not the only one that changes the environment. Every
state has a player that acts in that state.EFGs are typically
visualized as game-trees that:

@ are finite (the game has some pre-defined horizon; note that
(PO)MDPs do not have this!)

@ node of the game tree corresponds to the history of actions
from the beginning, edges are actions (as search trees)

@ rewards (termed utilities) are defined only in terminal states
(leafs of the game tree)

@ agent can have imperfect information (certain states can be
indistinguishable) — we will not be able to cover this in ZUI
(— B4M36MAS)

Viliam Lisy & Branislav Bo3ansky

Partially Observable Stochastic Games (POSGs)

POSGs are a multi-agent extension of POMDPs — every agent can
have their own actions, observations, and rewards. Every agent has
its own belief (about the state, about beliefs of other agents, ...).

One of the most general formal model — algorithmically
intractable in general.

Viliam Lisy & Branislav Bo3ansky

Solution of a Deterministic MDP

How can we find a solution of a deterministic MDP?

Find the best sequence of actions leading to the goal — explore
relevant states of an MDP and find the best action to be played in
these states such that the trajectory (or a run)

50, AO, R]_, S]_, Al, R2, 527 oo ,Sk
maximizes the accumulated reward (and Sy is a goal state)!.

For now, the rewards are summed together (in case of stochastic
transitions / POMDPs / negative costs, a discounted sum is
typically used with discount factor 0 < v < 1).

!Maximization of rewards = minimization of costs (we will use both).

Viliam Lisy & Branislav Bo3ansky

Solving Deterministic MDPs

© Start from the initial state Sq

© Apply available actions to the current state and generate new
possible states

© Select one of the newly generated states as the current one
@ If the current state is the goal state — finish
© If not, go to step 2

Questions:

@ Which state should we select out of all generated new states
in step 37

@ What if we generate a state that we have already explored?

Viliam Lisy & Branislav Bo3ansky

Solving Deterministic MDPs — Choosing Next State

Which state should we select out of all generated new states in
step 37

Goal is to find the best sequence of actions — we want to explore
the ones with the highest rewards (lowest costs) first.

What if we make a mistake? — We cannot forget which other
states are reachable — We keep a (sorted) list of reachable states
that can be further explored — open list or fringe.

Viliam Lisy & Branislav Bo3ansky

Solving Deterministic MDPs — Variants of Uninformed

Search

Variants of using the fringe:

@ the fringe is sorted, new states to explore are taken from the
beginning — uniform-cost search

@ the fringe is unsorted, newly expanded states are inserted to
the front, new states to explore are taken from the beginning
— depth first search (DFS)

@ the fringe is unsorted, newly expanded states are appended at
the back, new states to explore are taken from the beginning
— breadth first search (BFS)

BFS is complete, finds the shallowest solution (the sequence that
requires the least number of actions while ignoring rewards).
Requires exponential memory (and time).

Viliam Lisy & Branislav Bo3ansky

Solving Deterministic MDPs — Variants of Uninformed

Search

DFS is not complete (the algorithm might not terminate) — we
limit the maximal length of the sequence actions DFS can explore
and iteratively increase this limit — iterative deepening.

Uniform-cost search is complete and optimal (in case all rewards
are strictly negative). A variant of Dijkstra’s algorithm (only the
best path to a goal state not all states).

Viliam Lisy & Branislav Bo3ansky

Solving Deterministic MDPs

What if we generate a state that we have already explored?

Using this algorithm, we are generating a search tree. Every node
of the search tree corresponds to a state in the environment but
multiple nodes can correspond to the same state.

We can maintain a closed list of already evaluated states.

Viliam Lisy & Branislav Bo3ansky

Iterative Deepening

Combining good characteristics of BFS and DFS. Let's have a
limited-depth-dfs method:

o call 1imited-depth-dfs with depth limit O,
@ if unsuccessful, call 1imited-depth-dfs with depth limit 1,

@ if unsuccessful, call limited-depth-dfs with depth limit 2,
etc.

Complete, finds the shallowest solution, space requirements of a
DFS.Counterintuitively, it is not that wasteful (timewise):
@ the search tree grows exponentially — it is more time
consuming to generate / evaluate all states in depth exactly d
than repeatedly visiting states in the shallower depth

What if we want to optimize cost instead of number of actions? —
limit the overall cost and increase the cost iteratively by 1.

Viliam Lisy & Branislav Bo3ansky

Backward / Bidirectional Search

Do we need to search only from the initial state? — No.

Sometimes, searching from the goal state to a starting state can
be better:

@ number of the actions that lead to the goal state is small (the
problem is difficult at the beginning)

@ we need to be able to effectively generate previous states

We can go even further — searching from the both sides.

Viliam Lisy & Branislav Bo3ansky

Bidirectional Search

It is tempting — searching from start / goal (e.g., in parallel (1)).

If the shallowest solution has depth d, we can expand only bd/2
nodes (where b is the branching factor (number of available
actions)).

But what if the searches do not meet “in the middle” ? — we'li see the

next week.

Viliam Lisy & Branislav Bo3ansky

