
Lecture 13: Sequential Decisions with
Partial Information (POMDPs) 2

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz, bosansky@fel.cvut.cz

May, 2024

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 22

Reminder: Representation of Value Function with α vectors

If we fix an action a ∈ A, the value function (the expected reward
after playing that action) is a linear function in the current belief.
These linear functions are called α-vectors.

For each belief point, we take the best action hence we maximize
over all α-vectors:

v(b) = max
α∈V

∑
s∈S

α(s) · b(s)

where α(s) corresponds to the
value of the linear function α in
state s.

In general, α-vectors represent expected value for a policy
(contingency plan consisting of multiple steps).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 22

Exact value iteration in POMDPs

In exact (full) value iteration in POMDPs, |Vt | = |A| · |Vt−1||O|
new α-vectors are generated in each step of the algorithm.

Vt converges to optimal value function (the algorithm
incrementally constructs all possible t-step policies).

It is clear that such approach will not scale well. Pruning
dominated α-vectors is possible but does not solve the issue.

Observation

We do not need to compute all α-vectors – large portion of belief
space is (often) not reached hence not relevant for solving the
problem.

We can keep only a bounded number of belief points and for each
belief point we keep 1 (the best) α-vector.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 22

Point-based updates and point-based value iteration
(PBVI)

Let B = {b1, b2, . . .} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set
of belief points:

instead of adding all α-vectors, only the α-vectors that are
optimal in some of the belief points from B are kept,
we perform standard update for a limited set of belief points
b ∈ B:

vt+1(b) = max
a

∑
o∈O

max
α′∈vt

∑
r,s,s′

µp(s ′, r |s, a)b(s)O(o|s ′, a)
(
r + γα′(s ′)

)

Comparison of generated α-vectors for full VI and PBVI for tiger example after

30 iterations (from slides of M. Herrmann, RL 13).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 22

Point-based updates and point-based value iteration
(PBVI)

Let B = {b1, b2, . . .} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set of
belief points:

the set of belief points B can correspond to a uniform
coverage of the belief space or the points can focus on more
relevant parts of the belief space

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 22

Characteristics of PBVI

Advantages of PBVI:

removes exponential complexity (the number of alpha vectors
is bounded)

a practical algorithm for solving POMDPs

Disadvantages of PBVI:

it is not clear how far from the optimum is the current solution

the set of belief points needs to be updated / maintained

it is not clear which part of the belief space to explore

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 22

Heuristic Search Value Iteration (HSVI)

Approximates the value function with 2 approximate value
functions:

lower bound – a set of alpha vectors corresponding to
infinite-step policies

upper bound – a set of points overestimating values for each
belief point

Steps of the algorithm:

1 initialization of lower bound and upper bound approximate
functions

2 selecting belief points to update using a forward search
(selecting the best action to explore most promising space of
belief points)

3 performing point-based updates for both approximate
functions

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 22

Heuristic Search Value Iteration (HSVI)

Question

How to initialize lower / upper bound value function
approximations?

lower bound – choosing some action in all belief points all the
time is clearly a lower bound on the expected reward

upper bound – solving a simplified problem → solving an
MDP for each state s ∈ S

Updates:

lower bound – point-based value updates (only the set of
belief points is not bounded)

upper bound – compute a lower convex envelope of a set of
points in the upper bound and then use point-based value
updates

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 22

Heuristic Search Value Iteration (HSVI)

Updates:

lower bound – point-based value updates (only the set of
belief points is not bounded)

upper bound – compute a lower convex envelope of a set of
points in the upper bound and then use point-based value
updates

After an update, a new α vector is added into the lower bound
and/or a new point is added into the upper bound.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 22

Heuristic Search Value Iteration (HSVI)

Selection of the belief points to explore:

the algorithm explores the most promising actions →
the algorithm selects the action based on the upper bound
approximation
see the connection with search-based methods → the upper
bound is an optimistic evaluation of each belief point
the idea is either to (1) prove that the most-promising action
actually leads to this reward (thus increase the lower bound) or
(2) prove that the reward was overestimated and thus decrease
the upper bound for relevant belief points

the updates for the same action is performed for lower bound
approximation

This is a very common structure of AI algorithms – upper bound
drives the search, lower bounds maintains the best-found solution.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 22

Scaling up – Monte Carlo for POMDPs

Monte Carlo Tree Search (MCTS) methods were discussed in the
context of two player games.

However, we can use the same ideas for solving MDPs and also
POMDPs → POMCP algorithm.

Question

How to construct a Monte Carlo tree?

In games (and also for MDPs), there are perfectly observable
states (histories of actions) where a bandit algorithm (UCB) is
used. But states are not observable in POMDPs ...

Instead, we can use action-observation histories.

the agent is starting in some initial belief

executing some action generates possible observations
(according to a known probability distribution)

receiving observation updates belief in a well-defined manner
(computing a belief update)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 22

POMCP – Monte Carlo for POMDPs

Why action-observation histories are sufficient?

the agent is starting in
some initial belief

executing some action
generates possible
observations (according to
a known probability
distribution)

receiving observation
updates belief in a
well-defined manner
(computing a belief update)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 22

POMCP – Monte Carlo for POMDPs

Where is the catch?

Bayes update of belief points can be too computationally expensive
for large domains (with many states and/or observations).

The belief update can be done using particle filtering:

execute K random trials (randomly choosing a true world
state based on current belief, executing an action, determining
the next state)

this way we can approximate the next belief points (with
probabilities of receiving an observation)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 22

HSVI vs. POMCP (exact vs. sampling-based)

Question

What are the advantages / disadvantages of exact/approximate
algorithm compared to a sampling-based approach?

exact/approximate algorithms are better (in terms of the
quality of found solution) for small cases

exact/approximate algorithms do not scale for larger domains
(HSVI will suffer from increasing number of α-vectors,
maintaining the upper bound approximate function)

sampling-based methods are in theory capable of producing a
reasonable solution even for large problems

however, often, additional improvements are necessary for
sampling-based algorithms (as the particle filtering for
POMCP)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 22

POMDPs and RL

We have seen that MDPs with huge state space can be tackled by
(deep) reinforcement learning algorithms.

RL-based methods can be also used for POMDPs (recall that a
POMDP is “only” an MDP with infinitely large (continuous) state
space).

Atari games that require memory (i.e., it is not sufficient to choose
the best action only from the single (or a small number of)
image(s) correspond to POMDPs rather than MDPs (there is some
hidden state).

DQNs have been successfully used also for POMDPs (for example
with NNs that use notion of memory – Deep Recurrent Q-Learning for

Partially Observable MDPs link).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 22

https://arxiv.org/abs/1507.06527

From POMDPs to Games with Imperfect Information and
DeepStack

Why are imperfect information games different from single-agent
(or pefect-info) problems?

1 to play optimally, the players may need to randomly choose an
action from some probability distribution over available
actions

consider, for example, rock-paper-scissors game → when
playing, you randomly choose each action with probability 1/3
MDPs, POMDPs, 2 player perfect info games → it is
sufficient to consider only a single best action

2 in POMDPs, only the actions of the player and the
well-defined environment affect the belief point → in games,
there are also (possibly unobservable) actions of the opponent

consider, for example, a network-security problem where the
attacker infects some hosts → the network admin does not
directly observe these actions

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 22

From POMDPs to Games with Imperfect Information and
DeepStack

What are the consequences? Why cannot we simply use RL for
imperfect information games?

We can, but it is substantially more difficult to learn optimal
probability distribution than to identify the best action for a
decision point.

Consequently, for imperfect information games that do not require
that much randomization, RL-based approach can lead to
superhuman performance (for example, in Dota 2).

For other imperfect information games where randomization is
crucial, simple RL-based methods do not work well (e.g., poker).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 22

https://arxiv.org/abs/1912.06680

Deepstack

For poker, however, a variant of limited lookahead algorithm was
designed (link) that beat professional human poker players.

Key components:

instead of a belief point (possible states) of a single player, we
need to consider a set of states that some of the players
consider possible

instead of evaluating a single state using a heuristic eval
function (e.g., a NN), we need to evaluate a set of possible
states (with probabilities)

formulating and solving a valid limited-lookahead game
requires additional steps (it is not only a simple subtree of a
game tree) and a more complex algorithm

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 22

http://poker.cs.ualberta.ca/publications/17science.pdf

Active Research Area

In poker, the amount of unknown information is constant
(opponent’s cards). In real-world games, the amount of unknown
information grows exponentially.

Designing an algorithm for online game playing of imperfect
information is an ongoing challenge.

For games with very long horizon (or even unbounded/infinite),
the history cannot be used for identifying decision points → for
some games where only one player has imperfect information,
HSVI algorithm can be adopted (link).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 22

https://drive.google.com/open?id=0Bw6LZ0oERqbGR0ZnVFZwcHZSMFk

Overview of the course

We have covered basic areas of AI:

formal representation – MDPs/POMDPs, CSP, Logic

search – (un)informed, branch-and-bound prunning
(alpha-beta), sampled-based approaches

reinforcement learning

dealing with uncertainty – Bayesian networks, sequential
decision making under uncertainty

Described methods are general (domain-independent), the ideas
can be used for solving many types of problems.

We have highlighted that typically a (novel) combination of these
techniques can lead to great (groundbreaking) results.

There are new challenges ahead.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 22

Overview of the course (2)

AI is about problem-solving

Real-world problems are
often not solvable by a
single technique

You need to analyze and
decompose, identify and
solve sub-problems,
combine, ...

... and read, learn, search (Google / Bing / Duck / ...)
inspiration at top AI conferences (NeurIPS, IJCAI, AAAI, ICML)

knowing the state of the art allows you progress faster

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 22

