
Lecture 12: Sequential Decisions with
Partial Information (POMDPs)

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz, bosansky@fel.cvut.cz

May, 2024

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 21

What we already know?

What we already covered:

finding optimal plan

search-based (A*) / learning-based (RL) / sampling-based
(MCTS) approaches

uncertainty

The main formal model for us was Markov Decision Process
(MDP).

Unfortunately, the world is not perfect – agents often do not have
perfect information about the true state of the environment
→ Partially Observable MDPs (POMDPs).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 21

Motivation for POMDPs

Many practical applications naturally fit to the POMDP class:

more realistic

agents often receive partial information about the true state
(observations) rather than complete states

in robotics, the exact location of the robot in the environment
is typically not known

sensors are imperfect (there is always some level of
noise/uncertainty)
actions are imperfect

security scenarios (assuming fixed strategy of the opponent)

agents typically do not know the effects of the actions of the
opponent (which computer has been infiltrated by an attacker)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 21

Definition POMDPs

Recall the definition of POMDPs – We have a finite sets of states
S, rewards R, and actions A. The agent interacts with the
environment in discrete steps t = 0, 1, 2, At each timestep, the
agent has a belief – a probability distribution over states that
expresses the (subjective) likelihood about the current states.

The agent receives observations from a finite set O that affect
the belief. The agent starts from an initial belief and based on
actions and observations, it updates its belief. Given the current
belief b : S → [0, 1] and some action a ∈ A and received
observation o ∈ O, the new belief is defined as:

b(s ′) = µO(o|s ′, a) ·
∑
s∈S

Pr(s ′|s, a) · b(s)

where µ is a normalizing constant.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 21

POMDP – Example

#
G
#
↓ # #
#
#

The robot can now perceive only its surroundings but does not
know the exact position in the maze. States and actions remain
the same.

s = (X ,Y , d ,G)

actions = (move forward, move backward, turn left,
turn right)

Observations are all possible combinations of walls / free squares
in the 4-neighborhood (in front, right, behind, left):

(#,#,#,#), (#,#,#,), . . .

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 21

Beliefs in POMDPs

So how exactly we compute the beliefs1:

a = forward, o = (#, , ,#)
current beliefs bt new beliefs bt+1

#
G 0.25 0.25
#
#
0.25 0.25
#

→

#
G 0.5
#
#
0.5
#

for s ′ = (1, 1, <,), it holds

b′
t+1(s

′) = O(o|s ′, a) · Pr(s ′|a, (2, 1, <,)) · bt((2, 1, <,))

b′
t+1(s

′) = 1 · 1 · 0.25

and then bt+1(s
′) = µb′

t+1(s
′) where µ = 1

b′t+1((1,1,<,))+b′t+1((4,4,>,))

1Coordinates (0,0) are in the bottom left corner.
Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 21

How to act optimally in MDPs

Recall a value function for an MDP and a policy π

vπ : S → R

is a function assigning each state s the expected return
vπ(s) = Eπ G0 obtained by following policy π from state s.

Optimal policies share the same optimal state-value function:

v∗(s) = max
π

vπ(s) for all s ∈ S

Any policy that is greedy with respect to v∗ is an optimal policy.

π∗(s) = arg max
a

∑
s′,r

p(s ′, r |s, a)
[
r + γv∗(s

′)
]

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 21

How things change for POMDPs?

Which action is optimal depends on the belief over states:

#
G > (0.5)
#
#
< (0.5)
#

Consider 2 actions – move backward and turn right

move backward is better for the state (4, 4, >,)

turn right is better for the state (1, 1, <,)

The value of each action depends on the exact belief → value
function also depends on beliefs.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 21

Value function for POMDPs

A value function for a POMDP and a policy π

vπ : ∆(S)→ R

Can we update Bellman equation to use beliefs? Yes!

v∗(b) = max
a

∫
p(b′, r |b, a)

[
r + γv∗(b

′)
]
db′

... the “only problem” is that b is a continuous variable
→ computing optimal value function in this form is not practical.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 21

Representation of Value Function

Using beliefs, we have formulated an MDP with a continuous
set of states.

Discretization of beliefs is not very practical due to high dimension
(|S|).

Consider the Bellman equation again – what is our goal?

v∗(b) = max
a

∫
p(b′, r |b, a)

[
r + γv∗(b

′)
]
db′

Find the best action (and value) for each belief point.

There is infinitely many belief points, but the set of actions A is
finite!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 21

Representation of Value Function – α vectors

If we fix an action a ∈ A, the value function (for that action) is a
linear function in the current belief. These linear functions are
called α-vectors.

For each belief point, we take the best action hence we maximize
over all α-vectors:

v(b) = max
α

∑
s∈S

α(s) · b(s)

α-vectors are in fact more general → they represent expected
value for a policy (contingency plan consisting of multiple steps).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 21

Using α-vectors in value iteration

Using α-vectors corresponding to the value functions of currently
considered policies, we can compute new value (next iteration):

vt+1(b) = max
a

∑
o∈O

max
α′∈vt

∑
r,s,s′

µp(s ′, r |s, a)b(s)O(o|s ′, a)
(
r + γα′(s ′)

)
... but how do we construct α-vectors from vt+1?

1 assume there are α-vectors α′ representing values of policies
in step t

2 in step t + 1, we choose some action and then, based on the
observation, we follow with some of the policy corresponding
to α′ from vt (different observation leads to a different belief)

3 for example, choose action a3 and then

if o2 is received, use value of α′
4 (i.e., this value is achievable

via some policy corresponding to this α-vector)
if o1 is received, use value of α′

2

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 21

Tiger example

Let’s consider the best-known POMDP example – a tiger problem:
There are 2 doors hiding a treasure or a tiger. The agent does not
know where is the tiger and where is the treasure. The agent can
gather observations (listen) or open one of the doors.

states – {tiger left(TL), tiger right(TR)}
actions – {open left, open right, listen}
observations – {hearTL, hearTR}
rewards –

−1 for any listening action (in all states)
+10 for opening the door with treasure
−100 for opening the door with tiger

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 21

Tiger example

states – {tiger left(TL), tiger right(TR)}
actions – {open left, open right, listen}
observations – {hearTL, hearTR}
rewards –

−1 for any listening action (in all states)
+10 for opening the door with treasure
−100 for opening the door with tiger

initial belief is uniform – b0(TL) = b0(TR) = 0.5

transition dynamics –

performing action listen does not change the state
opening a door “restarts” the problem (i.e., p(s ′|s, a) = 0.5 for
both states s ′ ∈ {TL,TR}).

observation probabilities –

listening action generates observation hearTL/TR with a 15%
error – i.e., agent chooses action a = listen, then
O(hearTR|a,TR) = 0.85 and O(hearTR|a,TL) = 0.15.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 21

Tiger example

What are the optimal actions (1-step policy)?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 21

Tiger example

Choosing action listen is not sufficient → what should we do
next?

Depending on the observation, the belief will change:

assume b0(TR) = b0(TL) = 0.5, a = listen, and o = hearTR

now b1(TR) = 0.5·0.85
0.5·0.85+0.5·0.15 = 0.85

Since 0.85 ∈ [0.1, 0.9], after one observation the next optimal
action is still listen.

In general, the chosen actions in policies depend on received
observation, for example (a 2-step policy):

listen
if (observation is hearTR → open left)
else if (observation is hearTL → listen)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 21

Tiger example

What do the α-vectors corresponding to 2-step policies look like?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 21

Exact value iteration in POMDPs

In exact (full) value iteration in POMDPs, |Vt | = |A| · |Vt−1||O|
new α-vectors are generated in each step of the algorithm.

It is clear that such approach will not scale well. Pruning
dominated α-vectors is possible but does not solve the issue.

Observation

We do not need to compute all α-vectors – large portion of belief
space is (often) not reached hence not relevant for solving the
problem.

We can keep only a bounded number of belief points and for each
belief point we keep 1 (the best) α-vector.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 21

Point-based updates and point-based value iteration
(PBVI)

Let B = {b1, b2, . . .} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set
of belief points:

instead of adding all α-vectors, only the α-vectors that are
optimal in some of the belief points from B are kept,

Comparison of generated α-vectors for full VI and PBVI for tiger example after

30 iterations (from slides of M. Herrmann, RL 13).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 21

Point-based updates and point-based value iteration
(PBVI)

Let B = {b1, b2, . . .} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set of
belief points:

the set of belief points B can correspond to a uniform
coverage of the belief space or the points can focus on more
relevant parts of the belief space

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 21

Next week

Scaling-up solving POMDPs

more scalable VI-based algorithms

using MCTS-like algorithm for solving POMDPs

from POMDPs to II games and DeepStack (poker)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 21

