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Plan of today’s lecture

1 RL algorithms in tabular representation for unknown MDP

2 Scaling up with Neural Networks

3 DQN algorithm and its application to Atari games
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Remember MDP

Standard model for Reinforcement Learning problems

Source: Waldoalvarez @ wikimedia

S – states

R – rewards

A – actions

Discrete steps t = 0, 1, 2, . . .

Environment dynamics

p(s ′, r |s, a)← Pr{St = s ′,Rt = r |St−1 = s,At−1 = a}
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Dynamic Programming

Dynamic programing

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

cf. Dynamic Programming
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(Based on slides shared by R. Sutton)
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Simplest Temporal Difference Method

Simplest TD method

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Simplest TD Method
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V (St )←V (St )+α Rt+1 + γV (St+1)−V (St )[ ]
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(Based on slides shared by R. Sutton)
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R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Learning An Action-Value Function

Estimate qπ for the current policy π

St,At

Rt+1St St+1, At+1

Rt+2St+1
Rt+3St+2 St+3. . . . . .

St+2, At+2 St+3, At+3

After every transition from a nonterminal state, St , do this:
Q(St ,At )←Q(St ,At )+α Rt+1 + γQ(St+1,At+1)−Q(St ,At )[ ]
If St+1  is terminal, then define Q(St+1,At+1) = 0
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Q-Learning: Off-Policy TD Control

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 145

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵[R + � maxa Q(S0, a)�Q(S, A)]
S  S0;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.
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Figure 6.13: The cli↵-walking task. The results are from a single run, but
smoothed.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The
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6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S  S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:
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Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.



Q-Learning Example

(2,→) => −0.1
(3,←) => −0.1
(2,←) => −0.1
(1,→) => −0.11

(2,←) => −0.09
(1,←) => −0.1

α = 0.1, R = −1 for each step
Default: (∗, ∗) => 0

(2,←) => −0.191
(1,←) => −0.19

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Q-Learning: Off-Policy TD Control
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Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵[R + � maxa Q(S0, a)�Q(S, A)]
S  S0;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.
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Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S  S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:
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Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.
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Q-Learning vs. ε-Greedy Bandit

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Q-Learning: Off-Policy TD Control
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Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵[R + � maxa Q(S0, a)�Q(S, A)]
S  S0;

until S is terminal

Figure 6.12: Q-learning: An o↵-policy TD control algorithm.

(Figure 3.7). Can you guess now what the diagram is? If so, please do make
a guess before turning to the answer in Figure 6.14.
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Example 6.6: Cli↵ Walking This gridworld example compares Sarsa
and Q-learning, highlighting the di↵erence between on-policy (Sarsa) and o↵-
policy (Q-learning) methods. Consider the gridworld shown in the upper part
of Figure 6.13. This is a standard undiscounted, episodic task, with start and
goal states, and the usual actions causing movement up, down, right, and left.
Reward is �1 on all transitions except those into the the region marked “The
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6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S  S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

One-step Q-learning:
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Figure 6.5: The cli↵-walking task. The results are from a single run, but smoothed by
averaging the reward sums from 10 successive episodes.

The lower part of Figure 6.5 shows the performance of the Sarsa and Q-learning
methods with "-greedy action selection, " = 0.1. After an initial transient, Q-learning
learns values for the optimal policy, that which travels right along the edge of the
cli↵. Unfortunately, this results in its occasionally falling o↵ the cli↵ because of
the "-greedy action selection. Sarsa, on the other hand, takes the action selection
into account and learns the longer but safer path through the upper part of the
grid. Although Q-learning actually learns the values of the optimal policy, its on-
line performance is worse than that of Sarsa, which learns the roundabout policy.
Of course, if " were gradually reduced, then both methods would asymptotically
converge to the optimal policy.

Exercise 6.9 Why is Q-learning considered an o↵-policy control method?

Q-learning Expected Sarsa

Figure 6.6: The backup diagrams for Q-learning and expected Sarsa.

ε-Greedy Action Selection

In greedy action selection, you always exploit

In ε-greedy, you are usually greedy, but with probability ε you
instead pick an action at random (possibly the greedy action again)

This is perhaps the simplest way to balance exploration and
exploitation

Algorithm ε-Greedy:
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Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 22



Maximization BiasMaximization Bias Example

B A rightwrong
0. . .

N(�0.1, 1)

0

Q-learning
Double
Q-learning

Episodes
1001 200 300

%
Wrong
actions

100%

75%

50%

25%

5%
0

optimal

6.5. Q-LEARNING: OFF-POLICY TD CONTROL 139

6.5 Q-learning: O↵-Policy TD Control

One of the most important breakthroughs in reinforcement learning was the devel-
opment of an o↵-policy TD control algorithm known as Q-learning (Watkins, 1989).
Its simplest form, one-step Q-learning , is defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.6)

In this case, the learned action-value function, Q, directly approximates q⇤, the op-
timal action-value function, independent of the policy being followed. This dramat-
ically simplifies the analysis of the algorithm and enabled early convergence proofs.
The policy still has an e↵ect in that it determines which state–action pairs are visited
and updated. However, all that is required for correct convergence is that all pairs
continue to be updated. As we observed in Chapter 5, this is a minimal requirement
in the sense that any method guaranteed to find optimal behavior in the general case
must require it. Under this assumption and a variant of the usual stochastic approx-
imation conditions on the sequence of step-size parameters, Q has been shown to
converge with probability 1 to q⇤. The Q-learning algorithm is shown in procedural
form in Figure 6.10.

What is the backup diagram for Q-learning? The rule (6.6) updates a state–action
pair, so the top node, the root of the backup, must be a small, filled action node.
The backup is also from action nodes, maximizing over all those actions possible in
the next state. Thus the bottom nodes of the backup diagram should be all these
action nodes. Finally, remember that we indicate taking the maximum of these “next
action” nodes with an arc across them (Figure 3.7). Can you guess now what the
diagram is? If so, please do make a guess before turning to the answer in Figure 6.12.

Initialize Q(s, a), 8s 2 S, a 2 A(s), arbitrarily, and Q(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ✏-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S  S0;
until S is terminal

Figure 6.10: Q-learning: An o↵-policy TD control algorithm.

Tabular Q-learning:

START
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Double Q-Learning

A solution to mitigate the maximization bias by van Hasselt [2010]

Train two action-value functions Q1 and Q2

Do Q-learning on both, but

never on the same time steps (Q1 and Q2 are independent)
pick Q1 or Q2 at random to be updated on each step

If updating Q1 use Q2 for the value of the next state:

Q1(St ,At)← Q1(St ,At)+α
(

Rt+1 + Q2(St+1, argmax
a

Q1(St+1, a))− Q1(St ,At)
)

Action selection can use a combination of Q1 and Q2

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 22



Maximization Bias MitigatedExample of Maximization Bias
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Double Q-learning:

START

146 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

and � = 1).
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Figure 6.8: Comparison of Q-learning and Double Q-learning on a simple episodic MDP
(shown inset). Q-learning initially learns to take the left action much more often than the right
action, and always takes it significantly more often than the 5% minimum probability enforced
by "-greedy action selection with " = 0.1. In contrast, Double Q-learning is essentially
una↵ected by maximization bias. These data are averaged over 10,000 runs. The initial
action-value estimates were zero. Any ties in "-greedy action selection were broken randomly.

Are there algorithms that avoid maximization bias? To start, consider a bandit
case in which we have noisy estimates of the value of each of many actions, obtained
as sample averages of the rewards received on all the plays with each action. As we
discussed above, there will be a positive maximization bias if we use the maximum
of the estimates as an estimate of the maximum of the true values. One way to view
the problem is that it is due to using the same samples (plays) both to determine
the maximizing action and to estimate its value. Suppose we divided the plays in
two sets and used them to learn two independent estimates, call them Q1(a) and
Q2(a), each an estimate of the true value q(a), for all a 2 A. We could then use
one estimate, say Q1, to determine the maximizing action A⇤ = argmaxa Q1(a), and
the other, Q2, to provide the estimate of its value, Q2(A

⇤) = Q2(argmaxa Q1(a)).
This estimate will then be unbiased in the sense that E[Q2(A

⇤)] = q(A⇤). We can
also repeat the process with the role of the two estimates reversed to yield a second
unbiased estimate Q1(argmaxa Q2(a)). This is the idea of doubled learning. Note
that although we learn two estimates, only one estimate is updated on each play;
doubled learning doubles the memory requirements, but is no increase at all in the
amount of computation per step.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
h
Rt+1 +�Q2

�
St+1, argmax

a
Q1(St+1, a)

�
�Q1(St, At)

i
.
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Atari problem

Create a program that would learn to play any Atari game

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47, 253-279.
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Atari problem solution

“This work bridges the divide between
high-dimensional sensory inputs and ac-
tions, resulting in the first artificial agent
that is capable of learning to excel at a
diverse array of challenging tasks.”

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.
G., Graves, A., Riedmiller M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S. & Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature 518, 529-533.
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Atari Games MDP Representation

States:

Using four consecutive frames as state:

(Source: Greg Surma @ medium.com)

Reduction of image size: 210× 160× 3→ 84× 84× 1

Actions:

2× 8 directions of the joystick + button

Transitions are taken directly from a game emulator

Rewards:

Based on the game score

Any score increase → +1, any score decrease → −1
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How big is the MDP?

Assume we would quantise the colours to just black and white.
The number of possible states of the MDP is then:

284x84x4=28224 ≈ 108496.

There are estimated 1080 atoms in the observable universe.
Hence, a tabular representation of the q function may not work.
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Supervised Machine Learning

A useful tool for AI, which is not a focus of this course

Supervised learning = fitting a (high dimensional) function

For a data set (~xi , ~yi ), find a
function f that minimizes:

1

n

∑

i

‖f (~xi )− ~yi‖.

For example, f ( ) = 2, f ( ) = 3, f ( ) = 4, f ( ) = 5.

Q function is just a high-dimensional function approximable by a
Neural network.

q(s, a) : R28224 ×A → R
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Stochastic Gradient Descent

Dataset D = (~xi , ~yi )
Neural network fw with weights w ∈ Rm

Loss: l(D,w) = 1
|D|

∑
i‖fw (~xi )− ~yi‖.

Gradient descent: w ′ = w − α∂l(D,w)
∂w

Mini-batched version of the loss function:
For a uniformly selected subset of data D̃ ⊂ D called a minibatch
define the approximate loss: l̂(D̃,w) = 1

|D̃|
∑

i‖fw (~xi )− ~yi‖

and update: w ′ = w − α∂ l̂(D̃,w)
∂w .

It works, because E l̂(D̃,w) = l(D,w).
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DQN algorithm
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DQN Training

Trained for each game separately, but using the same architecture
and hyperparameters.

Convergence curve for ”Space Invaders”. One epoch is 520k
frames. ε = 0.05.

Training details: Minibatch size 32; exploration scaled from 1.0 to
0.1 over 1M frames and than fixed; overall 50M frames of training
(38 days); replay buffer for 1M most recent frames. Probably 10
days of training per game and agent (not reported).
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DQN Playing

Breakout
Space Invaders
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https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=W2CAghUiofY


Results Relative to an Expert Human
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Survey

https://forms.gle/9nMjNQpEygtYs3XA6
(also available from courseware list of lectures)
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Summary

RL can solve huge MDPs without their explicit knowledge.
Key components of RL algorithms are policy evaluation and policy
improvement.
Just using these steps on whole state space leads to

policy iteration

value iteration.

These algorithms are not super fast, but extremely versatile.

Updates of just selected states

Minimal / stochastic updates of policy and values

Function approximation

Endless modifications explored in RL literature
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