Lecture 6: Q-Learning and DQN

Viliam Lisy & Branislav Bo%ansky

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy©fel.cvut.cz

March, 2022

Viliam Lisy & Branislav Bosansky

Plan of today's lecture

© RL algorithms in tabular representation for unknown MDP
© Scaling up with Neural Networks
© DQN algorithm and its application to Atari games

Viliam Lisy & Branislav Bosansky

Remember MDP

Standard model for Reinforcement Learning problems

@ S — states

® R — rewards

@ A — actions 5

@ Discrete steps t =0,1,2, ...

P Environment dynamiCS Source: Waldoalvarez @ wikimedia

p(s',rls,a) < Pr{S; =5 Ry = r|St—1 = 5,Ar_1 = a}

Viliam Lisy & Branislav Bosansky

Dynamic Programming

V(S) < E[R., +7V(S,)] = Yo wals) > pls' rlSi a)lr + 9V (s)]

(Based on slides shared by R. Sutton)

Viliam Lisy & Branislav Bosansky

Simplest Temporal Difference Method

V(S) < V(S)+a[R,, +7V(S,.)-V(S)]

TS

1 I Il o\ /
/
7 \ | ’ N I vy

i

(Based on slides shared by R. Sutton)

Viliam Lisy & Branislav Bosansky

Learning An Action-Value Function

Estimate gr for the current policy 7t

B O O e m e mnemits
S[,AI St+])At+l St+2;Af+2 St+3yAt+3

After every transition from a nonterminal state, S, , do this:

Q(S,,A) < O(S,, A) +a[R, +70(S,,1,A,,) - O(S,,A)]
If §,,, 1s terminal, then define Q(S,,,.A,,,) =0

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Q-Learning: Off-Policy TD Control

One-step Q-learning: I
Q(St, Ar) + Q(St, Ar) + [Rt+1 +ymaxQ(Set1,a) — QS At)} /2@\

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S, A) + a[R + ymax, Q(S', a) — Q(S, A)]
S« 5
until S is terminal

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Q-Learning Example

(27_>) =>-0.1 I |1 Iz Is |4 Is Is |
(3,¢) =>-01 a=0.1, R = —1 for each step
87<_§ = _8'11 Default: (*,%) =>0
,—) => —0.
(2,+) => —0.09 (2,+) =>—0.191
(1,+) => —0.1 (1,) => —0.19

Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) < Q(S, A) + a[R + ymax, Q(F',a) — Q(S, A)]
S+ 9"

until S is terminal

Viliam Lisy & Branislav Bosansky

Q-Learning vs. e-Greedy Bandit

e-Greedy Action Selecti

In greedy action selection, you always exploit

Q-Learning: Off-Policy TD Control

One-step Q-leaming: In e-greedy, you are usually greedy, but with probability € you
Q(St, Ar) « Q(S1, A) +a [Rm +ymax Q(Si41,a) — Q(S/,,A/,)} instead pick an action at random (possibly the greedy action again)
a
/%\ This is perhaps the simplest way to balance exploration and
dee e
exploitation
Initialize Q(s, a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0 Algorithm e-Greedy:
Repeat (for each episode): Initialize, for a = 1 to k:
Initialize § ?;‘(?) oo
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy) e
Take action A, observe R, §' 4o J agmax,Q(a) with probability 1 —¢ (breaking ties randomly)
Q(S, A) < Q(S, A) + a[R + ymax, Q(S, a) — Q(S, A)] a random action with probability ¢
S« S R « bandit(A)
¢l S is torminal N(A) « N(4) +1
until S is terminal Q) Q) + i [R— @A)

RS, Suton s A. G Barto Reiforcement Leaming: An Introducion 34

Maximization Bias

%
Wrong
actions

100%
75%
50%

25%

5%
0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, optimal

1 100 200 300
Episodes

Tabular Q-learning: Q(Si, Ar) + Q(Si, Ar) + a|Ryy1 + 'ymng(StH,a) — Q(S, Ay)

Viliam Lisy & Branislav Bosansky

Double Q-Learning

A solution to mitigate the maximization bias by van Hasselt [2010]
@ Train two action-value functions @1 and Q>
@ Do Q-learning on both, but

@ never on the same time steps (@ and @, are independent)
o pick Q1 or @, at random to be updated on each step

o If updating Q1 use @ for the value of the next state:
Ql(st, At) <~ Ql(st, At)+C¥ (Rt+1 + Q2(St+17 arg maax Q1(5t+1, a)) — Ql(St, At))

@ Action selection can use a combination of Q; and Q>

Viliam Lisy & Branislav Bosansky

Maximization Bias Mitigated

75%! |

100%
%
Wrong 50%
actions
25%
5%
0

Double Q-learning:

N N(=0.1,1)
= ep OO =
\ : wrong right
\ START
: AN
/ \.
\Q-learning

Double o

Q-learning g
e optimal
1 100 200 300

Episodes

Qu(St: A1) = Qu(St, AD)+a [Rivs +7Qa(Sii1, argmax Qu (Sis1,) —~ Qu(Sh, Ar)]

Viliam Lisy & Branislav Bosansky

Atari problem

Create a program that would learn to play any Atari game

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47, 253-279.

Viliam Lisy & Branislav BoSansky

https://www.jair.org/index.php/jair/article/view/10819
https://www.jair.org/index.php/jair/article/view/10819

Atari problem solution

“This work bridges the divide between
high-dimensional sensory inputs and ac-
tions, resulting in the first artificial agent
that is capable of learning to excel at a
diverse array of challenging tasks.”

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.
G., Graves, A., Riedmiller M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S. & Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature 518, 529-533.

Viliam Lisy & Branislav Bosansky

https://daiwk.github.io/assets/dqn.pdf
https://daiwk.github.io/assets/dqn.pdf

Atari Games MDP Representation

States:

@ Using four consecutive frames as state:

(Source: Greg Surma @ medium.com)
@ Reduction of image size: 210 x 160 x 3 — 84 x 84 x 1
Actions:
@ 2 x 8 directions of the joystick + button

Transitions are taken directly from a game emulator
Rewards:

@ Based on the game score

@ Any score increase — +1, any score decrease — —1

Viliam Lisy & Branislav Bosansky

How big is the MDP?

Assume we would quantise the colours to just black and white.
The number of possible states of the MDP is then:

284x84x4 28224 108496

There are estimated 1080 atoms in the observable universe.
Hence, a tabular representation of the g function may not work.

Viliam Lisy & Branislav Bosansky

Supervised Machine Learning

A useful tool for Al, which is not a focus of this course

Supervised learning = fitting a (high dimensional) function

For a data set (x},y;), find a V2 f
function f that minimizes: Y1 M
Vs

1
= SN - il
2 21703) — il

-

- 5 o2 a2
X1 X5 X3 X4 X2

For example, () =2,f(3)=3,f(4)=4f(5)=5.

Q function is just a high-dimensional function approximable by a
Neural network.
q(s,a) : R%®224 A 5 R

Viliam Lisy & Branislav Bosansky

Stochastic Gradient Descent

Dataset D = (xj, yi)
Neural network f,, with weights w € R™
Loss: (D, w) = b i1 (55) — il

H . !/
Gradient descent: w/ = w — a—g =

Mini-batched version of the loss function:
For a uniformly selected subset~of data D C D called a minibatch
define the approximate loss: /(D,w) = I%I o illfw(Xi) = yill

and update: W' = w — aw'

It works, because E7(D, w) = I(D, w).

Viliam Lisy & Branislav Bosansky

DQN algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s;),a; 0)
Execute action a, in emulator and observe reward r, and image x; , ;
Set s;41 =s;,a;.%41 and preprocess ¢, | =d(s;41)
Store transition (d),,a{,rf,(,b,H) inD
Sample random minibatch of transitions ((f)v,aj,rj,qﬁj +1) from D

tj if episode terminates at step j+ 1
Sety; = rj+7 maxy Q(d)j_,_l,a’; 0_) otherwise

Perform a gradient descent step on (yj - Q(¢»,aj: 0))2 with respect to the
network parameters ()
Every C steps reset 0= Q

End For

Viliam Lisy & Branislav Bosansky

DQN Training

Trained for each game separately, but using the same architecture
and hyperparameters.

a 2200 c 10
o 2,000 9
hel

8 1,800 g s

2 1,600 5 5
©

5 1,400 N

o 1200 S 5

S 1,000 g .

o 800 X 3
& 600 g

%’ 400 z 2

200 1

0

%520 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Training epochs Training epochs

Convergence curve for " Space Invaders”. One epoch is 520k
frames. € = 0.05.

Training details: Minibatch size 32; exploration scaled from 1.0 to
0.1 over 1M frames and than fixed; overall 50M frames of training
(38 days); replay buffer for 1M most recent frames. Probably 10

days of training per game and agent (not reported).

Viliam Lisy & Branislav BoSansky

DQN Playing

Breakout
Space Invaders

Viliam Lisy & Branislav Bosansky

https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=W2CAghUiofY

Results Relative to an Expert Human

Video Pinball]

Joxing |

Breakout |

Star Gunner |

Robotank |

Atlantis |

Crazy Climber |

Gopher |

Demon Attack |

Name This Game |

Krull 7|

Assault 7|

Road Runner _|

Kangaroo |

James Bond |
Tennis

Pong |

Space Invaders |

Beam Rider |

Tutankham |
Kung-Fu Master

Freeway |

Time Pilot |

Enduro |

Fishing Derby |

Up and Down |

Ice Hockey |

Q'bert |

HERO. 7]

Asterix |

Battle Zone |

Wizard of Wor |

Chopper Command |

Centipede |

Bank Heist _|

River Raid |

Zaxxon |

Amidar |

Alien”]

Venture 7|

Seaquest |

Double Dunk _|
Bowling

Ms. Pac-Man |

Asteroids |

Frostbite 7|

Gravitar 7|

Private Eye |

Montezuma's Revenge |

.

2539%

ismi;m

i!i

it

At human-level or above

I

Below human-level

Ll

Ll

2

I

B
Fan
%
%
P
=
o

T

T T T T
100 200 300 400 500

https://forms.gle/9InMjNQpEygtYs3XA6
(also available from courseware list of lectures)

Viliam Lisy & Branislav Bosansky

https://forms.gle/9nMjNQpEygtYs3XA6

RL can solve huge MDPs without their explicit knowledge.

Key components of RL algorithms are policy evaluation and policy
improvement.

Just using these steps on whole state space leads to

@ policy iteration
@ value iteration.
These algorithms are not super fast, but extremely versatile.
@ Updates of just selected states
@ Minimal / stochastic updates of policy and values
@ Function approximation

@ Endless modifications explored in RL literature

Viliam Lisy & Branislav Bosansky

