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“ MR quick summary

= Spin property of hydrogen atoms
= Using strong B, magnetic field

= 1.5T, 3T —clinical scanners

= 7T — experimental scanners
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“ MRI quick summary

" |maging magnetic properties of tissue
= Proton density
= T1-weighted relaxation
= T2-weighted relaxation
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Brain imaging with different modalities

Structure PET (Positron emission tomography)

Soft tissue %

Bones \ CT (Computed tomography)

Vessels
Physiology
Metabolism
Function

MRI
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= Functional MRI

" |mage brain activity

= Spatial resolution “mm
= Temporal resolution ~s
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“ Brain regions

= Anatomical regions
" |ndividual difference
= Sjze?
= shape?
= topology?
" Functional regions
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“ Brain regions

= Examples of brain activation regions

Sensory Motor Language Vision

Touch Finger tapping Picture naming Listening to Reversing
words checkerboard

Passive active active passive passive
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“ Brain anatomy

= Neurons and glial cells
= Neurons communicate through axons
= Through electrochemical processes

Axon

- Dendrites

Nucleus

Nucleolus Microfilament - Soma

Rough endoplasmic
reticulum

- Axon
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FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 6.2 © 2004 Sinauer Associates, Inc. D R E S D E N ' ‘ = - n
ccccc pt | ™ & D
~



“ Brain anatomy

= Gray matter

= Consists mostly of neurons
= White matter

= Consists mostly of axons

Gray matter White matter
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= Neuronal activation

" |ntegrative and signalling activity
= Change cell membrane potential
= Release of neurotrasmitters

" |onic pumps to restore concentration gradients
= Requires glucose and oxygen

Terminal branches of axon
(form junctions with other cells)

Dendrites

(receive messages
\ _/— 7 from other cells)
f/
Axon

) ! p |
> _l M 4 \/ (passes messages away ” il 2
[ from the cell body to

Cell body - other neurons,
(the cell’s life- A __muscles, or glands)
support center)

Myelin sheath

(covers the axon of some
- neurons and helps speed

Neural impulse _neural impulses)

(electrical signal traveling

down the axon)
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= Brain vasculature

= Blood supplies brain with oxygen and glucose
" |nternal carotid and vertebral arteries
= Further branching to microvessels and capillaries
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“ Neurovascular coupling

= Neurovascular coupling
= Vasoactive substances = Dilate vessels
= — Reduces resistance
"= - Increase blood flow

(1) Neuronal (3) Haemodynamic

activity response
(2) Neurovascular

’ \ couplin
Stimulus I 9 o "
or modulation 3 ' i "

in background
activity
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“ fMRI physiology

* What is measured in fMRI?
= Electrical impulses?
= Neurotransmitters?
* Blood perfusion?
= Blood perfusion through the level of oxygenation

(1) Neuronal (3) Haemodynamic fMRI BOLD
activity response response
(2) Neurovascular (4) Detection by

: ' couplin MRI scanner
Stimulus %o:E piing = - og

or modulation
in background
activity
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History of BOLD imaging

= BOLD - Blood Oxygenation Level Dependent
= Ogawa et al., 1990

= Mice and rats at 7T MRI

= Contrast on gradient-echo images influenced by proportion of
oxygen in breathing gas

" |ncreasing oxygen content -2 increased contrast
= Ogawa et al., 1992

= Humans at 4T MRI

= Visual stimulation

= Changes of contrast in visual cortex
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BOLD signal and T, *

= T,” relaxation — decay of signal after excitation
= Two components of T,":
" |ntermolecular interactions
= - dephasing = T, signal decay
" Macroscopic magnetic field inhomogeneity
= - dephasing 2 T, decay.
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. BOLD Signal and TZ* ‘; .. RedBloodCells 30 Wi

=
-
r / \ Oxygen (O,)
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= Why does blood oxygenation affect the BOLD MRI signal?
= Hemoglobin contains iron to bind the oxygen
= Oxyhemoglobin (oxHb) is diamagnetic
= Deoxyhemoglobin (dxHb) is paramagnetic
= Higher dxHb concentration
= - increased magnetic susceptibility I
= - increased magnetic field inhomogeneities 0 B N T
= > decrease T,
= - |lower BOLD MRI signal
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- Hemodynamic response

= Neuronal activity
= - Increased O, metabolism = Increased dxHb = lower BOLD signal?
= - Neurovascular coupling = Vessel dilation = increased CBF

= - dxHb concentration decreases = higher BOLD signal

G N

Resting Activated



- Hemodynamic response

Brain Metabolic Physiological Physical MR
function rates effects effects properties
Neuronal
activity
\ Glucose
and oxygen
metabolism
Cerebral
blood
volume
(CBV) Magnetic
field
Cerebral uniformity \ Decay
Blood Time T.*
blood flow | ) '\ 2
(CBF) oxygenation (T2) weighted
image
intensity
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Hemodynamic response

= Delay in BOLD signal change after activation
" |nitial dip — increase in oxygen consumption before CBF increase

= Undershoot — CBF decrease faster than CBV

Relative concentration

Oxygenated

i hemoglobin

Deoxygenatv

hemoglobin
1 | | | | | |

0 2 4 6 8 10 12
Time (s)

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 7.5 © 2004 Sinauer Associales, Inc
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“fMRI experimental design

= Goal: To detect what regions/voxels are active during a specific task




“ What sequence should be used for fMRI

= Neuronal response - 200-500ms
= Hemodynamic response —~s

= Standard whole brain sequence
= ~1mm spatial resolution
= Time resolution “mins

= Fast single shot sequences
" Echo planar imaging (EPI)
= 500ms-2s acquisition




“ fMRI task design
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- Types of fMRI designs

= Block-design
= Detection power
= Event-related design
= More flexible
= Mixed design

Block design Event-related design

Stimulus train

Stimulus train
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“ Readout in fMRI design

= /| spatial resolution:
= J time resolution
= @ coverage (number of slices)
= N temporal resolution requires:
= ( spatial resolution
= (@ coverage (number of slices)
= /I SNR (signal-to-noise ratio):
= | Decreased spatial resolution
= P Increased scan time via averaging

Spatial resolution

Temporal resolution SNR
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“fMRI study design

= BOLD signal — combination CBV, CBF, CMRO,,
= Observe change of BOLD signal as a reaction on a task or event

Left Hand - Touch

Stimulus
:j‘, 3200
0.2 lé
(/]
00 20 40 60 80 100 :
1.2, 8
=
HRF g oo
2 3
w ,
20 4 100 E l
awor=4 » - 5
| :REST: :TASK: :REST| :REST: TASK: :REST |
Expected ‘
L |1 ]
response 2 minutes 24 seconds 2 minutes 24 seconds
TIME
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“I have my data, now what?

= Data pre-processing

Structural MRI functional MRI
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Why pre-process fMRI data

Data are noisy (task-related change <5%)
Subjects move
Things change during the experiment

Preprocessing:
= - Increase sighal to noise ratio
= - Helps to meet assumptions for statistical analysis
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- Subject motion

= Correct for head motion
" 6 parameters rigid transformation

= 3 rotations
= 3 translations

= Lie very still
= Exclude subjects

MCFLIRT estimated mean displacement C(mm)
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Spatial normalization

= Register functional vs. anatomical per subject
= Register to average brain (MNI)
= Larger population
= Higher power Functional Anatomical

Within-subject

Template

o
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.Temporal filtering

" Temporal drift from scanner
" High-pass filter

= Physiological cycles (cardiac, respiratory)

Raw Signal
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- Spatial filtering

= Convolution with a Gaussian kernel

= |[mproves

= SNR

= Specificity
= Reduces

= Spatial resolution
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= Is there an activation?

= A finger tapping example
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A simple fMRI experiment

= Passive tapping vs rest (7 cycles)
= Blocks of 6 scans per cycle

120 ¢
118 {
116 H
114 F

12F

= |s there a change in the BOLD response
between finger tapping and rest?

10

108 |

106
R
104
102}
100
0
time {seconds}

Stimulus function

response at [62, -28, 10]

100 200 300 400 500 600
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“A simple fMRI experiment

= Activation =2 compare:
" Magnitude of response
= Measurement noise

= T-test

120 ¢
>
118

116 |

response at [62, -28, 10]

4
104 |
102

100 -

114 F

112

110F

108 |

106 |

Signal from one voxel

200 300 400 500 600

time {seconds}

Stimulus function

Compare tap in green vs rest
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= General linear model

= Experimental data (Y) - linear combination (B) of different model factors (x),
along with uncorrelated noise (g)

= Testing slope (B) against null hypothesis

30 - Y:ﬁX+ﬁO+£ =

25 -

20 -
15 -
10 -
SR < NE——————
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General linear model for fMRI

Y

timepoints

Observed data
(known)
BOLD signal in a
single voxel

Design matrix

X

_

(known)

Components that can explain the

data

Model parameters
(unknown)
Contribution of each
component of Xto Y

Error
Difference between
the observed data

and model
prediction
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GLM example: Design

= Block design, language task
= Word generation (noun presented, verb generated)
= Word (verb presented, thinking on it)
= Rest

= Design matrix:

E
generation rest



GLM example: Estimating betas

* Fitting model to data — ordinary least squares — minimizing ’¢
" Y= XpB + ¢
= f=X"X)" X"y
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GLM example: Estimating betas

= Suboptimal fit
" f=10,03]




GLM example: Estimating betas

= Active in word generation g = [0.83,0.16, 2.98]

DDDDDDD
ccccccc



GLM example: Estimating betas

= Active in word generation and shadowing $=[0.68, 0.82, 2.17]
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GLM example: Estimating betas

= Voxel not active £=[0.03, 0.06, 2.04]
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GLM example: Voxelwise fit

betal

= Calculate fit for every voxel




GLM example: Significance

= Which of these series should we trust?
= Noise, effect size, number of measurements




GLM example: Contrast

= Weights c of model parameters 3
" c=[c; ¢, c;5] for B =[B; B, Bs]

= ¢c=[100]
= Active in word generating
= c=[1-10]

= More active in generating than in shadowing
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GLM example: Hypothesis testing

= Null hypothesis (H,) — there is no effect
= Alternative hypothesis (H,) — we find the effect in data
= Reject the null hypothesis = activation

0.83
c'B=[1 0 0] lo.m] = (0.83
2.98
Hy: c'Bp=0
Hy: c¢'B#0
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GLM example: t-contrast

_ c'p

B ocT(XTx)"1c
follows Student’s distribution (N-1 degrees of freedom)
Probability that the null hypothesis is true

p-value <0.05 we reject the null hypothesis

0.40
0.35}
0.30}
0.25}

= 0.20}
0.15}
0.10f
0.05}
0.00

T T T T T
- 0 2

outcomes | Common outcomes |outcomes
Reject H’Ul Retain H, 'Reject H,
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GLM example: t-contrast example

Fit model

Get effect size

B=

(0.83
0.16

2.98 |

Get error

cm I~ L=6.42

(sort of)
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GLM example: t-contrast example

= Voxels active in word generation

083
1 0 0]o016
298| 083

- =642"
041*0.32 0.41*0.32

0.03
I 0 0]o0.06

2.04 0.03

= — 044
0.19%0.32 0.19%0.32

0.68
1 0 0]082
217] 068

0.40%*0.32  0.40%0.32




GLM example: t-contrast example

= Voxel active more in generating than shadowing

(0.83 ]
1 -1 0]0.16
298 7 o
b RO I
0.41%0.32 041*0.32

[0.03 ]
I -1 0]0.06
2.04 | -0.03
019*032  0.19%032

[0.68 ]
me L -1 0]0s2

2.17 -0.14
 A— — — =
N Pl EE e 040*0 .32 040*0 32

=—0.58

=—].12




“fMRI applications

= Surgery planning

Volunteer Patient with glioblastoma
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fMRI application

Addiction
= Understanding of brain effects of long-term use
= Development of treatment strategies for abusers
Pharmacological studies
= Effects on cognition
Neuropsychological disorders
= Disease markers may help in treatment
Aging and brain development
= Normal and pathological changes
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fMRI summary

Simple and non-invasive
Very good time and spatial resolution
Wide range of applications

Problems with noise
Limited clinical use
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