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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Reconstruction methods

▶ Backprojection (not an inverse)
▶ Fourier reconstruction (slow)
▶ Filtered backprojection
▶ Algebraic reconstruction (iterative)
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Forward projection
sinogram

Pφ(r) =
∫

(x ,y)∈L(r ,φ)

µ(x , y)dl

r = x cosφ+ y sinφ

Pφ(r) =
∫

t
o(x , y)dt

x = r cosφ− t sinφ
y = r sinφ+ t cosφ

Variable correspondence:

ξ′ = r , η′ = t, ξ = x , η = y
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Backprojection
laminogram

µb(x , y) =
π∫

0

Pφ(r)dφ

r = x cosφ+ y sinφ
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Backprojection
laminogram

µb(x , y) =
π∫

0

Pφ(r)dφ

r = x cosφ+ y sinφ

for uniformly discretized φ

φi = π(i − 1)/nφ, i = 1, . . . , nφ

µb(x , y) ≈ π

nφ

nφ∑
i=1

Pφ(x cosφi + y sinφi)
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Backprojection
. . . is not an inverse of the Radon transform, leads to star artifacts

laminogram µb — the original object µ blurred, convolved by 1/|r |
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Central slice theorem
(Projection Theorem, Věta o centrálńım řezu)

Pφ(r) =
∫
µ(r cosφ− t sinφ, r sinφ+ t cosφ)dt

Fourier transform of the Radon transform by r :

F {R [µ(x , y)]} = F {Pφ(r)} = P̂φ(ω) =
∫

Pφ(r)e−2πjωr dr

=
∫∫

µ(r cosφ− t sinφ, r sinφ+ t cosφ)e−2πjωr drdt

Substitution (r , t) → (x , y):

P̂φ(ω) =
∫
µ(x , y)e−2πjω(x cos φ+y sin φ)dxdy
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Central slice theorem

P̂φ(ω) =
∫
µ(x , y)e−2πjω(x cos φ+y sin φ)dxdy

Denote u = ω cosφ v = ω sinφ

P̂(u, v) =
∫
µ(x , y)e−2πj(xu+yv)dxdy

and therefore

P̂(u, v) = F {µ(x , y)}
P̂φ(ω) = F {µ(x , y)} (ω cosφ, ω sinφ) = µ̂(ω cosφ, ω sinφ)
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Central slice theorem

P̂(u, v) = F {µ(x , y)}
P̂φ(ω) = F {µ(x , y)} (ω cosφ, ω sinφ) = µ̂(ω cosφ, ω sinφ)

Slice of the 2D Fourier transform of the image µ at angle φ is the 1D Fourier transform of the
projection Pφ of the same image µ.
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Fourier reconstruction
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Fourier reconstruction (2)

▶ 1D FT P̂φ(ω) of each projection Pφ(r)
▶ Interpolate FT from polar to Cartesian grid (to get P̂(u, v))
▶ Inverse 2D FT P̂(u, v) to get object µ

Cons: computational complexity, interpolation artifacts 9 / 49



Inverse Radon transform
From the Fourier slice theorem:

P̂(u, v) = F {µ(x , y)}

µ(x , y) = F −1
{

P̂(u, v)
}

=
∞∫

−∞

∞∫
−∞

P̂(u, v)e2πj(xu+yv)dudv

Polar coordinates u = ω cosφ, v = ω sinφ:

µ(x , y) =
π∫

0

∞∫
−∞

P̂φ(ω)e2πjω(x cos φ+y sin φ)|ω|dωdφ

where |ω| is the Jacobian (determinant) of (ω, ϕ) → (u, v)∣∣∣∣∣ ∂u
∂φ

∂u
∂ω

∂v
∂φ

∂v
∂ω

∣∣∣∣∣ =
∣∣−ω sin2 φ− ω cos2 φ

∣∣ =
∣∣ω∣∣
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Inverse Radon transform

µ(x , y) =
π∫

0

∞∫
−∞

P̂φ(ω)e2πjω(x cos φ+y sin φ)|ω|dωdφ

can be written as

µ(x , y) =
π∫

0

Qφ(x cosφ+ y sinφ︸ ︷︷ ︸
r

)dφ

Qφ(r) =
∞∫

−∞

P̂φ(ω)e2πjωr |ω|dω

where Qφ(r) is a modified projection
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Inverse Radon transform

µ(x , y) =
π∫

0

Qφ(r)dφ

Qφ(r) =
∞∫

−∞

P̂φ(ω)e2πjωr |ω|dω

Qφ(r) = F −1
{

|ω|P̂φ(ω)
}

= F −1 {|ω|} ∗ Pφ(r)

defining the exact inverse Radon transform

Pφ(r) = R
[
µ(x , y)

]
µ(x , y) = R−1[

Pφ(r)
]
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Filtered backprojection
Filtrovaná zpětná projekce

▶ Filter all projections Pφ(r) for all φ, get modified projections Qφ(r)
▶ Backproject modified projections and sum

µ(x , y) =
π∫

0

Qφ(r)dφ

Qφ(r) = h(t) ∗ Pφ(r) = F −1 {H(ω)} ∗ Pφ(r)
H(ω) = |ω|

▶ No Fourier transform involved.
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Practical implementation of filtered backprojection
▶ Problem: Ideal filter H(ω) = |ω| amplifies noise
▶ Solution: Make P̂φ(ω) frequency limited. Ramakrishnan-Lakshiminaryanan −→

Ram-Lak filter:

H(ω) =
{

|ω| if |ω| ≤ Ω
0 otherwise

▶ Ram-Lak filter causes artefacts (Gibbs). Many solutions (Hamming filter,
Shepp-Logan filter). Tradeoff between SNR and resolution.
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Bandlimited ramp filter h
in space domain
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Filtered backprojection example
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Filtered backprojection

original image, 1,3, 4, 16, 32, a 64 projections
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Fan-beam reconstruction
▶ Rays not parallel, not a Radon transform.
▶ Rebinning

image courtesy of Gillian Henderson
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Fan-beam reconstruction
▶ Rays not parallel, not a Radon transform.
▶ Rebinning

image courtesy of Jonathan Mamou and Yao Wang
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Fan-beam reconstruction (2)

▶ Rays not parallel, not a Radon transform.
▶ Exact algorithms:

▶ Rebinning
▶ filtered backprojection (Katsevich) — computational complexity, increased dose.

▶ Approximate algorithms: Modified filtered backprojection (quadratic cosine
correction, cos θ). Feldkamp-Davis-Kress

▶ Algebraic reconstruction. Best quality but slow.
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Algebraic reconstruction

▶ Setup and solve a (large) system of equations describing the measurements.
▶ Mostly (but not necessarily) linear

Advantages over FBP
▶ Better modeling of the physics — attenuation, scattering, limited resolution,

beam geometry, sensor noise, beam hardening. . .
▶ Flexible, better handling of limited acquisition — restricted region, restricted

angles, few measurements required
▶ Can use a statistical image model (regularization)
▶ Higher quality, less apparent artifacts

Disadvantage — speed
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FBP versus ART
few projections

Courtesy of Technical University of Denmark
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FBP versus ART
missing angles

Courtesy of Technical University of Denmark
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Linear reconstruction

▶ Discretize continuous µ(x) to pixels µi

µ(x) =
M∑

i=1
µiψi(x)

▶ Basis functions (piecewise constant, P0)

ψi(x) =
{

1, if x in pixel i
0, otherwise

▶ Radon transform

Pφ(r) = R
[
µ

]
(φ, r) =

M∑
i=1

µiR
[
ψi

]
(φ, r)
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Linear reconstruction (2)
▶ For all projections pj = Pφj (rj), j = 1, . . . ,N

pj = Pφj (rj) =
M∑

i=1
µi R

[
ψi

]
(φj , rj)︸ ︷︷ ︸

wij

pj =
M∑

i=1
wijµi

p = Wµ

where µi are pixel values, pj are the projections.
Knowing p, solve for µ.

▶ Linear equation system
▶ is big (104 ∼ 106 unknowns and measurements)
▶ can be overdetermined
▶ can be underdetermined
▶ is sparse
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,φj )

ψi(x)dl
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,φj )

ψi(x)dl

For thick rays — intersection area

wij =
∫

x∈L′(rj ,φj )

ψi(x)dx
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,φj )

ψi(x)dl

Binary approximation

wij =
{

1, if ray L(rj , φj) intersects pixel ψi

0, otherwise
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Least squares solution
for overdetermined systems

Minimize the reconstruction error e

µ∗ = arg min
µ

∥Wµ − p︸ ︷︷ ︸
e

∥2
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Least squares solution
for overdetermined systems

Minimize the reconstruction error e

µ∗ = arg min
µ

∥Wµ − p︸ ︷︷ ︸
e

∥2

The reconstruction error e must be perpendicular to range of W.

0 = WT e = WT (
Wµ∗ − p

)
Normal equations

WT p = WT Wµ∗

Pseudoinverse solution

µ∗ =
(
WT W

)−1WT p

suitable for smaller problems
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Minimum-norm solution
for underdetermined systems or noisy data

Add regularization D

µ∗ = arg min
µ

∥Wµ − p︸ ︷︷ ︸
e

∥2 + λ∥Dµ∥2

Normal equations

WT p =
(
WT W + λDT D

)
µ∗

Pseudoinverse solution

µ∗ =
(
WT W + λDT D

)−1WT p
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Iterative methods

Principles
▶ Start from an initial guess of µ

▶ Compare measured projections and simulations
▶ Correct pixel values to decrease the difference
▶ Iterate until convergence

Properties
▶ Take advantage of the sparseness (complexity O(N) per iteration)
▶ Low memory complexity (O(M))
▶ −→ Suitable for large systems of equations
▶ Early stopping
▶ Slower for small problems (compared to direct methods)
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Projection method
Kaczmarz’s method

pj =
M∑

i=1
wijµi , j = 1, 2, . . . ,N

pj =
〈
wj ,µ

〉
= wT

j µ

▶ Affine solution space of equation j

Sj =
{
µ ∈ RM ; pj = ⟨wj ,µ⟩

}
Normal vector wj

∀µ ∈ Sj ,µ
′ ∈ Sj ; ⟨wj ,µ − µ′⟩ = 0
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Projection to an affine space
”affine space is a geometric structure that generalizes some of the properties of
Euclidean spaces in such a way that these are independent of the concepts of distance
and measure of angles, keeping only the properties related to parallelism and ratio of
lengths for parallel line segments.”

Projection onto Sj

g∗ = PSj

(
h) = arg min

g∈Sj
∥g − h∥
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and measure of angles, keeping only the properties related to parallelism and ratio of
lengths for parallel line segments.”
Projection onto Sj

g∗ = PSj

(
h) = arg min

g∈Sj
∥g − h∥

Moving in the normal direction (minimum change) until hitting Sj

g∗ = h − λwj

pj = ⟨wj ,h⟩

Solution

λ = (⟨wj ,h⟩ − pj)/(⟨wj ,wj⟩) normalized residual
g∗ = h − (⟨wj ,h⟩ − pj)(/⟨wj ,wj⟩wj)
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Projection method
the algorithm

▶ Initial solution µ(0) (e.g. random)
▶ Project sequentially to constraints 1, 2, . . . ,N, 1, 2, . . .

µ(1) = PS1µ
(0)

µ(2) = PS2µ
(1)

µ(3) = PS3µ
(3)

. . .

▶ Repeat until convergence
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Interpretation of the update

µ(k+1) = µ(k) − ⟨wj ,µ
(k)⟩ − pj

⟨wj ,wj⟩︸ ︷︷ ︸
p̃j

wj

pj =
M∑

i=1
wijµi = ⟨wj ,µ⟩

Projection p̂j⟨wj ,µ
(k)⟩ along ray j

Backprojection of the correction p̃j along ray j
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Projection example
N = 2
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Projection method
properties

▶ Computationally cheap: one projection cost O(M), applying all constraints
O(MN)

▶ Low-memory complexity: O(M) if wij can be calculated on the fly.
▶ If a solution exists, the projection method converges to it.
▶ Convergence may be slow.
▶ If no solution exists, the method may oscillate.
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Projection method improvements

▶ Constraint ordering

▶ Under/overrelaxation,

µ = µ(0) − α
⟨wj ,µ⟩ − pj

⟨wj ,wj⟩
wj

0 < α < 2

▶ Incorporating constraints — positivity (µi ≥ 0), zero outside,. . .
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Simplified update rules

▶ Binary additive case (wij ∈ {0, 1})

∀j , g∗
k = hk −

∑
i ,wij =1

hi − pj

Nj
, for wkj = 1, Nj =

∑
i

wij = 1

▶ Binary multiplicative case (wij ∈ {0, 1})

∀j , g∗
k = hk

pk∑
i ,wij =1

hi
, for wkj = 1
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Projections by integration

pj =
∫
µ(rj cosφj − t sinφ, rj sinφj + t cosφ)dt

pj =
M∑

i=1
wijµi = ⟨wj ,µ⟩
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Projections by integration

pj =
∫
µ(rj cosφj − t sinφ, rj sinφj + t cosφ)dt

pj =
M∑

i=1
wijµi = ⟨wj ,µ⟩

µ(x) =
M∑

i=1
µiψi(x)

wij =
∫
ψi(rj cosφj − t sinφ, rj sinφj + t cosφ)dt

pj = ∆s
∑

k
µ(rj cosφj − t sinφ, rj sinφj + t cosφ),

with t = ∆s k
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Backprojections by integration

Backprojection can be also interpreted by sampling the integration path.
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Other iterative methods

▶ simultaneous iterative reconstruction (SIRT), Cimmino’s method — block update
▶ simultaneous algebraic reconstruction technique (SART) — bilinear ψ, projection

by integration, Hamming window over rays
▶ iterative least-squares technique (ILST)
▶ multiplicative algebraic reconstruction technique (MART)
▶ iterative sparse asymptotic minimum variance (SAMV)
▶ (preconditioned) conjugated gradients (CG) — with regularization for ill-posed

problems
▶ . . .

38 / 49



Example
moving heart

filtered back projection iterative (nonlinear)

Courtesy of Biomedizinische NMR Forschungs GmbH
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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3D computed tomography

▶ Technical challenges: power, cooling
▶ Rotation method (slice by slice)
▶ Spiral/helix method
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Spiral method
▶ Acceleration: 10 min → 1 min

▶ Pitch:
P = ∆l/d

∆l bed shift per rotation, d slice thickness.
Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.
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Spiral method (2)

▶ Interpolation in z axis
▶ Interpolation wide — 1 turn. Less noise, larger effective slice thickness.
▶ Interpolation Slim — 1/2 turn, symmetry. More noise, smaller effective slice

thickness.
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Multislice acquisition

▶ Acceleration

▶ Multi-plane reconstruction / multi-slice linear interpolation / multi-slice filtered
interpolation
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CT image quality

▶ Parameters:
▶ Resolution (0.5 mm)
▶ Contrast (δH, about 5 − 10 HU.)
▶ Detection threshold (about 1 mm at ∆H = 200, 5 mm at ∆H = 5).
▶ Noise (SNR)

▶ Artifacts
▶ Scanner defects, malfunctions, operator error
▶ Metal parts (shadows)
▶ Motion artifacts
▶ Partial volume
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Artifact examples
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Radiation dose

▶ Absorbed dose D in units 1 Gy (gray) = 1 J/kg.
Before 1 Gy = 100 rad

▶ Effective dose equivalent (dávkový ekvivalent) HE [Sv] (sievert)

HE =
∑

i
wiHi =

∑
i

wiciDi

H = cD. Quality factor c is 1 for X-rays and γ rays, 10 for neutrons, 20 for α
particles.

Coefficient w is organ dependent: male/female glands 0.2, lungs 0.12, breast 0.1,
stomach 0.12, thyroid gland 0.05, skin 0.01.

∑
wi = 1.

Before 1 Sv = 100 rem

▶ Sum the doses

48 / 49



Radiation dose

▶ Absorbed dose D in units 1 Gy (gray) = 1 J/kg.
Before 1 Gy = 100 rad

▶ Effective dose equivalent (dávkový ekvivalent) HE [Sv] (sievert)
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Radiation dose
▶ Medical limit (USA) is 50 mSv/year

(limit for a person working with radiation),
corresponding to 1000 chest X-rays,
or 15 head CTs,
or 5 whole body CTs (1 CT≈ 10 mSv).

▶ low-dose CT≈ 2 ∼ 5 mSv, PET≈ 25 mSv
▶ In radioactive background about 3 mSv/year (mainly radon).

In Colorado (altitude 1500 ∼ 4000 m) about 4.5 mSv/year. Mean dose from
medical imaging 0.3 mSv/year,
about 3 long flights.

▶ aircrew members have the largest average annual effective dose about 3 mSv of
all US radiation-exposed workers.
Reason: galactic cosmic radiation, which is always present, and
solar particle events, called “solar flares”

▶ cancer related death 20 %. 1 CT=10 mSv — relative increase by 10−3 ∼ 10−4
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Computed Tomography, conclusions

▶ Excellent spatial resolution
▶ 3D image
▶ Fast acquisition
▶ Weak soft tissue contrast (contrast agents available)
▶ Reconstruction algorithm
▶ Radiation dose
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