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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Reconstruction methods

▶ Backprojection (not an inverse)
▶ Fourier reconstruction (slow)
▶ Filtered backprojection
▶ Algebraic reconstruction (iterative)
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Forward projection
sinogram

Pφ(r) =
∫

(x ,y)∈L(r ,φ)

µ(x , y)dl

r = x cosφ+ y sinφ

Pφ(r) =
∫

t
µ(x , y)dt

x = r cosφ− t sinφ
y = r sinφ+ t cosφ

Variable correspondence:

ξ′ = r , η′ = t, ξ = x , η = y
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Backprojection

µb(x , y) =
π∫

0

Pφ(r)dφ

r = x cosφ+ y sinφ
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Backprojection

µb(x , y) =
π∫

0

Pφ(r)dφ

r = x cosφ+ y sinφ

for uniformly discretized φ

φi = π(i − 1)/nφ, i = 1, . . . , nφ

µb(x , y) ≈ π

nφ

nφ∑
i=1

Pφ(x cosφi + y sinφi)

5 / 49



Backprojection
. . . is not an inverse of the Radon transform, leads to star artifacts
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Backprojection
. . . is not an inverse of the Radon transform, leads to star artifacts

laminogram µb — the original object µ blurred, convolved by 1/|r |
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Central slice theorem
(Projection Theorem, Věta o centrálńım řezu)

Pφ(r) =
∫
µ(r cosφ− t sinφ, r sinφ+ t cosφ)dt

Fourier transform of the Radon transform by r :

F {R [µ(x , y)]} = F {Pφ(r)} = P̂φ(ω) =
∫

Pφ(r)e−2πjωr dr

=
∫∫

µ(r cosφ− t sinφ, r sinφ+ t cosφ)e−2πjωr drdt

Substitution (r , t) → (x , y):

P̂φ(ω) =
∫∫

µ(x , y)e−2πjω(x cos φ+y sin φ)dxdy
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Central slice theorem

P̂φ(ω) =
∫∫

µ(x , y)e−2πjω(x cos φ+y sin φ)dxdy

Denote u = ω cosφ v = ω sinφ

P̂(u, v) =
∫∫

µ(x , y)e−2πj(xu+yv)dxdy

and therefore

P̂(u, v) = F {µ(x , y)}
P̂φ(ω) = F {µ(x , y)} (ω cosφ, ω sinφ) = µ̂(ω cosφ, ω sinφ)
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Central slice theorem

P̂(u, v) = F {µ(x , y)}
P̂φ(ω) = F {µ(x , y)} (ω cosφ, ω sinφ) = µ̂(ω cosφ, ω sinφ)

Slice of the 2D Fourier transform of the image µ at angle φ is the 1D Fourier transform of the
projection Pφ of the same image µ.
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Fourier reconstruction
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Fourier reconstruction (2)

▶ 1D FT P̂φ(ω) of each projection Pφ(r)
▶ Interpolate FT from polar to Cartesian grid (to get P̂(u, v))
▶ Inverse 2D FT P̂(u, v) to get object µ

Cons: computational complexity, interpolation artifacts 9 / 49



Inverse Radon transform
From the Fourier slice theorem:

P̂(u, v) = F {µ(x , y)}

µ(x , y) = F −1
{

P̂(u, v)
}

=
∞∫

−∞

∞∫
−∞

P̂(u, v)e2πj(xu+yv)dudv

Polar coordinates u = ω cosφ, v = ω sinφ:

µ(x , y) =
π∫

0

∞∫
−∞

P̂φ(ω)e2πjω(x cos φ+y sin φ)|ω|dωdφ

where |ω| is the Jacobian (determinant) of (ω, ϕ) → (u, v)∣∣∣∣∣ ∂u
∂φ

∂u
∂ω

∂v
∂φ

∂v
∂ω

∣∣∣∣∣ =
∣∣−ω sin2 φ− ω cos2 φ

∣∣ =
∣∣ω∣∣
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Inverse Radon transform

µ(x , y) =
π∫

0

∞∫
−∞

P̂φ(ω)e2πjω(x cos φ+y sin φ)|ω|dωdφ

can be written as

µ(x , y) =
π∫

0

Qφ(x cosφ+ y sinφ︸ ︷︷ ︸
r

)dφ

Qφ(r) =
∞∫

−∞

P̂φ(ω)e2πjωr |ω|dω

where Qφ(r) is a modified projection
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Inverse Radon transform

µ(x , y) =
π∫

0

Qφ(r)dφ

Qφ(r) =
∞∫

−∞

P̂φ(ω)e2πjωr |ω|dω

Qφ(r) = F −1
{

|ω|P̂φ(ω)
}

= F −1 {|ω|} ∗ Pφ(r)

defining the exact inverse Radon transform

Pφ(r) = R
[
µ(x , y)

]
µ(x , y) = R−1[

Pφ(r)
]
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Filtered backprojection
Filtrovaná zpětná projekce

▶ Filter all projections Pφ(r) for all φ, get modified projections Qφ(r)
▶ Backproject modified projections and sum

µ(x , y) =
π∫

0

Qφ(r)dφ

Qφ(r) = h(t) ∗ Pφ(r) = F −1 {H(ω)} ∗ Pφ(r)
H(ω) = |ω|

▶ No Fourier transform involved.
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Practical implementation of filtered backprojection
▶ Problem: Ideal filter H(ω) = |ω| amplifies noise
▶ Solution: Make P̂φ(ω) frequency limited. Ramakrishnan-Lakshiminaryanan −→

Ram-Lak filter:

H(ω) =
{

|ω| if |ω| ≤ Ω
0 otherwise

▶ Ram-Lak filter causes artefacts (Gibbs). Many solutions (Hamming filter,
Shepp-Logan filter). Tradeoff between SNR and resolution.
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Bandlimited ramp filter h
in space domain
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Filtered backprojection example
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Filtered backprojection

original image, 1,3, 4, 16, 32, a 64 projections
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Fan-beam reconstruction
▶ Rays not parallel, not a Radon transform.

▶ Rebinning

image courtesy of Gillian Henderson
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Fan-beam reconstruction
▶ Rays not parallel, not a Radon transform.
▶ Rebinning

image courtesy of Jonathan Mamou and Yao Wang
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Fan-beam reconstruction (2)

▶ Rays not parallel, not a Radon transform.
▶ Exact algorithms:

▶ Rebinning
▶ filtered backprojection (Katsevich) — computational complexity, increased dose.

▶ Approximate algorithms: Modified filtered backprojection (quadratic cosine
correction, cos θ). Feldkamp-Davis-Kress

▶ Algebraic reconstruction. Best quality but slow.
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Algebraic reconstruction

▶ Setup and solve a (large) system of equations describing the measurements.
▶ Mostly (but not necessarily) linear

Advantages over FBP
▶ Better modeling of the physics — attenuation, scattering, limited resolution,

beam geometry, sensor noise, beam hardening. . .
▶ Flexible, better handling of limited acquisition — restricted region, restricted

angles, few measurements required
▶ Can use a statistical image model (regularization)
▶ Higher quality, less apparent artifacts

Disadvantage — speed
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FBP versus ART
few projections

Courtesy of Technical University of Denmark
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FBP versus ART
missing angles

Courtesy of Technical University of Denmark
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Linear reconstruction

▶ Discretize continuous µ(x) to pixels µi

µ(x) =
M∑

i=1
µiψi(x)

▶ Basis functions (piecewise constant, P0)

ψi(x) =
{

1, if x in pixel i
0, otherwise

▶ Radon transform

Pφ(r) = R
[
µ

]
(φ, r) =

M∑
i=1

µiR
[
ψi

]
(φ, r)
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Linear reconstruction (2)
▶ For all projections pj = Pφj (rj), j = 1, . . . ,N

pj = Pφj (rj) =
M∑

i=1
µi R

[
ψi

]
(φj , rj)︸ ︷︷ ︸

wij

pj =
M∑

i=1
wijµi

p = Wµ

where µi are pixel values, pj are the projections.
Knowing p, solve for µ.

▶ Linear equation system
▶ is big (104 ∼ 106 unknowns and measurements)
▶ can be overdetermined
▶ can be underdetermined
▶ is sparse
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,φj )

ψi(x)dl
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,φj )

ψi(x)dl

For thick rays — intersection area

wij =
∫

x∈L′(rj ,φj )

ψi(x)dx
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Weight coefficients

For line rays — intersection length

wij =
∫

x∈L(rj ,φj )

ψi(x)dl

Binary approximation

wij =
{

1, if ray L(rj , φj) intersects pixel ψi

0, otherwise
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Least squares solution
for overdetermined systems

Minimize the reconstruction error e

µ∗ = arg min
µ

∥Wµ − p︸ ︷︷ ︸
e

∥2
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Least squares solution
for overdetermined systems

Minimize the reconstruction error e

µ∗ = arg min
µ

∥Wµ − p︸ ︷︷ ︸
e

∥2

The reconstruction error e must be perpendicular to range of W.

0 = WT e = WT (
Wµ∗ − p

)
Normal equations

WT p = WT Wµ∗

Pseudoinverse solution

µ∗ =
(
WT W

)−1WT p

suitable for smaller problems
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Minimum-norm solution
for underdetermined systems or noisy data

Add regularization D

µ∗ = arg min
µ

∥Wµ − p︸ ︷︷ ︸
e

∥2 + λ∥Dµ∥2

Normal equations

WT p =
(
WT W + λDT D

)
µ∗

Pseudoinverse solution

µ∗ =
(
WT W + λDT D

)−1WT p

26 / 49



Iterative methods

Principles
▶ Start from an initial guess of µ

▶ Compare measured projections and simulations
▶ Correct pixel values to decrease the difference
▶ Iterate until convergence

Properties
▶ Take advantage of the sparseness (complexity O(N) per iteration)
▶ Low memory complexity (O(M))
▶ −→ Suitable for large systems of equations
▶ Early stopping
▶ Slower for small problems (compared to direct methods)
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Projection method
Kaczmarz’s method

pj =
M∑

i=1
wijµi , j = 1, 2, . . . ,N

pj =
〈
wj ,µ

〉
= wT

j µ

▶ Affine solution space of equation j

Sj =
{
µ ∈ RM ; pj = ⟨wj ,µ⟩

}
Normal vector wj

∀µ ∈ Sj ,µ
′ ∈ Sj ; ⟨wj ,µ − µ′⟩ = 0
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Projection to an affine space

Projection onto Sj

g∗ = PSj

(
h) = arg min

g∈Sj
∥g − h∥
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Projection to an affine space
Projection onto Sj

g∗ = PSj

(
h) = arg min

g∈Sj
∥g − h∥

Moving in the normal direction (minimum change) until hitting Sj

g∗ = h − λwj

pj = ⟨wj , g∗⟩

Solution

λ = (⟨wj ,h⟩ − pj)
⟨wj ,wj⟩

normalized residual

g∗ = h − (⟨wj ,h⟩ − pj)
⟨wj ,wj⟩

wj
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Projection method
the algorithm

▶ Initial solution µ(0) (e.g. random)
▶ Project sequentially to constraints 1, 2, . . . ,N, 1, 2, . . .

µ(1) = PS1µ
(0)

µ(2) = PS2µ
(1)

µ(3) = PS3µ
(3)

. . .

▶ Repeat until convergence
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Interpretation of the update

µ(k+1) = µ(k) − ⟨wj ,µ
(k)⟩ − pj

⟨wj ,wj⟩︸ ︷︷ ︸
p̃j

wj

pj =
M∑

i=1
wijµi = ⟨wj ,µ⟩

Projection p̂j = ⟨wj ,µ
(k)⟩ along ray j

Backprojection of the correction p̃j along ray j
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Projection example
N = 2
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Projection method
properties

▶ Computationally cheap: one projection cost O(M), applying all constraints
O(MN)

▶ Low-memory complexity: O(M) if wij can be calculated on the fly.
▶ If a solution exists, the projection method converges to it.
▶ Convergence may be slow.
▶ If no solution exists, the method may oscillate.
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Projection method improvements

▶ Constraint ordering

▶ Under/overrelaxation,

µ = µ(0) − α
⟨wj ,µ⟩ − pj

⟨wj ,wj⟩
wj

0 < α < 2

▶ Incorporating constraints — positivity (µi ≥ 0), zero outside,. . .
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Simplified update rules

▶ Binary additive case (wij ∈ {0, 1})

∀j , g∗
k = hk −

∑
i ,wij =1

hi − pj

Nj
, for wkj = 1, Nj =

∑
i

wij = 1

▶ Binary multiplicative case (wij ∈ {0, 1})

∀j , g∗
k = hk

pk∑
i ,wij =1

hi
, for wkj = 1
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Projections by integration

pj =
∫
µ(rj cosφj − t sinφ, rj sinφj + t cosφ)dt

pj =
M∑

i=1
wijµi = ⟨wj ,µ⟩
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Projections by integration

pj =
∫
µ(rj cosφj − t sinφ, rj sinφj + t cosφ)dt

pj =
M∑

i=1
wijµi = ⟨wj ,µ⟩

µ(x) =
M∑

i=1
µiψi(x)

wij =
∫
ψi(rj cosφj − t sinφ, rj sinφj + t cosφ)dt

pj = ∆s
∑

k
µ(rj cosφj − t sinφ, rj sinφj + t cosφ),

with t = ∆s k
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Backprojections by integration

Backprojection can be also interpreted by sampling the integration path.
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Other iterative methods

▶ simultaneous iterative reconstruction (SIRT), Cimmino’s method — block update
▶ simultaneous algebraic reconstruction technique (SART) — bilinear ψ, projection

by integration, Hamming window over rays
▶ iterative least-squares technique (ILST)
▶ multiplicative algebraic reconstruction technique (MART)
▶ iterative sparse asymptotic minimum variance (SAMV)
▶ (preconditioned) conjugated gradients (CG) — with regularization for ill-posed

problems
▶ . . .
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Example
moving heart

filtered back projection iterative (nonlinear)

Courtesy of Biomedizinische NMR Forschungs GmbH
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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3D computed tomography

▶ Technical challenges: power, cooling
▶ Rotation method (slice by slice)
▶ Spiral/helix method

41 / 49



Spiral method
▶ Acceleration: 10 min → 1 min

▶ Pitch:
P = ∆l/d

∆l bed shift per rotation, d slice thickness.
Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.

42 / 49



Spiral method
▶ Acceleration: 10 min → 1 min
▶ Pitch:

P = ∆l/d
∆l bed shift per rotation, d slice thickness.
Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.

42 / 49



Spiral method (2)

▶ Interpolation in z axis
▶ Interpolation wide — 1 turn. Less noise, larger effective slice thickness.
▶ Interpolation Slim — 1/2 turn, symmetry. More noise, smaller effective slice

thickness.
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Multislice acquisition

▶ Acceleration

▶ Multi-plane reconstruction / multi-slice linear interpolation / multi-slice filtered
interpolation
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CT image quality

▶ Parameters:
▶ Resolution (0.5 mm)
▶ Contrast (δH, about 5 − 10 HU.)
▶ Detection threshold (about 1 mm at ∆H = 200, 5 mm at ∆H = 5).
▶ Noise (SNR)

▶ Artifacts
▶ Scanner defects, malfunctions, operator error
▶ Metal parts (shadows)
▶ Motion artifacts
▶ Partial volume
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Artifact examples
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Analytical methods

Algebraic reconstruction

3D CT

Radiation dose
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Radiation dose

▶ Absorbed dose D in units 1 Gy (gray) = 1 J/kg.
Before 1 Gy = 100 rad

▶ Effective dose equivalent (dávkový ekvivalent) HE [Sv] (sievert)

HE =
∑

i
wiHi =

∑
i

wiciDi

H = cD. Quality factor c is 1 for X-rays and γ rays, 10 for neutrons, 20 for α
particles.

Coefficient w is organ dependent: male/female glands 0.2, lungs 0.12, breast 0.1,
stomach 0.12, thyroid gland 0.05, skin 0.01.

∑
wi = 1.

Before 1 Sv = 100 rem

▶ Sum the doses
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Radiation dose
▶ Medical limit (USA) is 50 mSv/year

(limit for a person working with radiation),
corresponding to 1000 chest X-rays,
or 15 head CTs,
or 5 whole body CTs (1 CT≈ 10 mSv).

▶ low-dose CT≈ 2 ∼ 5 mSv, PET≈ 25 mSv
▶ In radioactive background about 3 mSv/year (mainly radon).

In Colorado (altitude 1500 ∼ 4000 m) about 4.5 mSv/year. Mean dose from
medical imaging 0.3 mSv/year,
about 3 long flights.

▶ aircrew members have the largest average annual effective dose about 3 mSv of
all US radiation-exposed workers.
Reason: galactic cosmic radiation, which is always present, and
solar particle events, called “solar flares”

▶ cancer related death 20 %. 1 CT=10 mSv — relative increase by 10−3 ∼ 10−4
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Computed Tomography, conclusions

▶ Excellent spatial resolution
▶ 3D image
▶ Fast acquisition
▶ Weak soft tissue contrast (contrast agents available)
▶ Reconstruction algorithm
▶ Radiation dose
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