Computed tomography (CT)
Part 2

J. Kybic and André Sopczak!

2005-2024

1Using images from J. Hozman, J. Fessler, S. Webb, M. Slaney, A. Kak and others
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Analytical methods

2/49



Reconstruction methods

» Backprojection (not an inverse)
» Fourier reconstruction (slow)
P Filtered backprojection

» Algebraic reconstruction (iterative)
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Forward projection

sinogram

P =[xy
(x.y)EL(r,p)
r=Xxcosp+ ysinp

Po(r) = /tu(xay)dt

X =rcosp — tsinp

y =rsinp 4 tcosp

Variable correspondence:

g=r, 0=t &=x, n=y

", Lir, )
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Backprojection

L(r, o)
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Backprojection

po(x.9) = [ Pulr)de
0

r=xcosp+ ysinp

for uniformly discretized ¢
pi=n(i—1)/n,, i=1,...,n4

Ny
’7T .
po(x.y) = —— > Py(xcospj+ysin;)
¥ i=1
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Backprojection

..is not an inverse of the Radon transform, leads to star artifacts
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Backprojection

...is not an inverse of the Radon transform, leads to star artifacts
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Backprojection
...is not an inverse of the Radon transform, leads to star artifacts

Star Artifact

laminogram pp — the original object p blurred, convolved by 1/|r|
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Central slice theorem

(Projection Theorem, Véta o centrélnim Yezu)

P,(r) = /u(rcoscp — tsing, rsing + tcosy)dt

Fourier transform of the Radon transform by r:

F AR e} = F (P} = Puli) = [ Polr)e0ar
= //,u(rcosw — tsingp, rsing + tcosp)e 2™ drdt

Substitution (r, t) — (x,y):

/Sw(w) = // M(X’y)e—27rjw(xcosg0+ysin ip)dxdy
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Central slice theorem

'btp(w) = // M(X,y)efzﬂjW(XCos @+y sin Lp)dxdy
Denote u = wcosy Vv =wsing
Plu,v) = // p(x, y)e W) dxdy

and therefore

P(u,v) = 7 {ul(x,y)}
Po(w) = .7 {1(x,y)} (wcos p,wsin ) = fi(w cos @, wsin ¢)
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Central slice theorem

P(u,v) = 7 {u(x,y)}
Po(w) = .F {1(x,y)} (wcos p,wsin ) = ji(w cos @, wsin )

Slice of the 2D Fourier transform of the image 1 at angle ¢ is the 1D Fourier transform of the
projection P, of the same image .
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Fourier reconstruction
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Fourier reconstruction (2)
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> 1D FT P,(w) of each projection P,(r)
» Interpolate FT from polar to Cartesian grid (to get P(u,v))
» Inverse 2D FT P(u,v) to get object u

Cons: computational complexity, interpolation artifacts 9,49



Inverse Radon transform
From the Fourier slice theorem:

P(u,v) = Z {u(x,y)}

pw(x,y) =F1* P(u v) / / (u, v)e2™ ) qudy

— o0 —00

Polar coordinates u = wcosp, v =wsiny:

m™ o0

/ / @ zﬂjw(x cos p+y sin ¢)|w|dwd(p
— 00

where |w| is the Jacobian (determinant) of (w, ¢) — (u, v)

Qu  Qu
%i,’ g“‘j‘:‘—wsin2g0—wcoszgo|:’w|
Oy ow

10/49



Inverse Radon transform

T 00
// Pap 27rijcos<p+ysm<p‘w|dwdso
0 —oc0

can be written as

pu(x,y) = / Qy(x cos p + ysinp)de
—_—
0

r

o
= / /5¢(w)627rj“’r]w|dw

where Q,(r) is a modified projection
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Inverse Radon transform

pxy) = [ Qe
0

Qu(r) = / I%(w)e27rjwr|w]dw

Qp(r) = FH{|wlPo(w) } = Z 7 {|wl}  Py(r)
defining the exact inverse Radon transform

Pu(r) = Z[u(x,y)]
p(x,y) = Z[Py(r)]
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Filtered backprojection

Filtrovana zpétna projekce

> Filter all projections P,(r) for all ¢, get modified projections Q,(r)

» Backproject modified projections and sum

pxy) = [ Qe
0

Qp(r) = h(t) * Py(r) = F 1 {H(w)} * Py(r)
H(w) = |w|

» No Fourier transform involved.
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Practical implementation of filtered backprojection

» Problem: Ideal filter H(w) = |w| amplifies noise
» Solution: Make P,(w) frequency limited. Ramakrishnan-Lakshiminaryanan —

Ram-Lak filter:
i€ <0

0 otherwise
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Practical implementation of filtered backprojection

» Problem: Ideal filter H(w) = |w| amplifies noise
» Solution: Make P,(w) frequency limited. Ramakrishnan-Lakshiminaryanan —

Ram-Lak filter:
if <Q
ey = {1l Tl <
0 otherwise

» Ram-Lak filter causes artefacts (Gibbs). Many solutions (Hamming filter,
Shepp-Logan filter). Tradeoff between SNR and resolution.

Hin)
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Bandlimited ramp filter h

in space domain

Impulse respanse of bandlimited ramp filter
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Filtered backprojection example

Top sinogram row

Sinogram
Pelr)
1 Flay) AL Laminogram
mage f(x,y .
64 64 Jolz,y)
|
BR )
64 —64
-64 z 6: -64 T 6
0 -64 T 64 0
-64 r 64
Ramp filtered sinogram Top row of filtered sinogram
0 Po(r) R 1
4 FBP image
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179
64 0
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Filtered backprojection

original image, 1,3, 4, 16, 32, a 64 projections
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Fan-beam reconstruction

» Rays not parallel, not a Radon transform.

image courtesy of Gillian Henderson
16 /49



Fan-beam reconstruction

» Rays not parallel, not a Radon transform.

» Rebinning

image courtesy of Jonathan Mamou and Yao Wang
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Fan-beam reconstruction (2)

» Rays not parallel, not a Radon transform.

» Exact algorithms:

» Rebinning
> filtered backprojection (Katsevich) — computational complexity, increased dose.

» Approximate algorithms: Modified filtered backprojection (quadratic cosine
correction, cos ). Feldkamp-Davis-Kress
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Fan-beam reconstruction (2)

» Rays not parallel, not a Radon transform.
» Exact algorithms:

» Rebinning
> filtered backprojection (Katsevich) — computational complexity, increased dose.

» Approximate algorithms: Modified filtered backprojection (quadratic cosine
correction, cos ). Feldkamp-Davis-Kress

» Algebraic reconstruction. Best quality but slow.
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Algebraic reconstruction
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Algebraic reconstruction

» Setup and solve a (large) system of equations describing the measurements.

» Mostly (but not necessarily) linear
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Algebraic reconstruction

» Setup and solve a (large) system of equations describing the measurements.
» Mostly (but not necessarily) linear
Advantages over FBP

» Better modeling of the physics — attenuation, scattering, limited resolution,
beam geometry, sensor noise, beam hardening. ..

> Flexible, better handling of limited acquisition — restricted region, restricted
angles, few measurements required

» Can use a statistical image model (regularization)
» Higher quality, less apparent artifacts

Disadvantage — speed
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FBP versus ART

few projections

Phantom FBP (iradon) ART w/ box constraints

. 0

Courtesy of Technical University of Denmark

20/49



FBP versus ART

missing angles

Phantom

ART w/ box constr.

Data = sinogram
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Filtered back projection

Courtesy of Technical University of Denmark
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Linear reconstruction

Image matrix

Hy
T

Hy
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Linear reconstruction

» Discretize continuous p(x) to pixels y;

M
p(x) = Z pithi(x)
=1

> Basis functions (piecewise constant, P0)

Bilx) = {l,ifx in pixel f

0, otherwise
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Linear reconstruction
» Discretize continuous p(x) to pixels y;

M
p(x) = Z pithi(x)
=1

> Basis functions (piecewise constant, P0)

Bilx) = {l,ifx in pixel f

0, otherwise

» Radon transform
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Linear reconstruction (2)
» For all projections p; = P,.(r;), j=1,...,N

Py, (r;) ZU'

M
= E Wijlbi
i=1

p=Wn

where 1i; are pixel values, p; are the projections.
Knowing p, solve for p.

7/11 Ik rJ)
—_————

wij
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Linear reconstruction (2)
» For all projections p; = P,.(r;), j=1,...,N

pj = Py,(rj) = E:m (i) (21, 77)
—— —

wij

M
= E Wij b
i=1

p=Wn

where 1i; are pixel values, p; are the projections.
Knowing p, solve for p.

» Linear equation system
> is big (10* ~ 10° unknowns and measurements)
» can be overdetermined
» can be underdetermined
| 2

is sparse
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Weight coefficients

Image matrix

Hy
T

Hy
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Weight coefficients

For line rays — intersection length

XGL(Ij,ij)
For thick rays — intersection area

wij = / pi(x)dx

xel!(rj,p;)
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Weight coefficients

For line rays — intersection length

W = / bix)dl

xeL(r;,¢;)

Binary approximation

1, if ray L(rj, ¢j) intersects pixel 1;
Wi =
Y 0, otherwise
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Least squares solution

for overdetermined systems

Minimize the reconstruction error e

p* = arg min||Wp — p||®
B ——

e
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Least squares solution
for overdetermined systems
Minimize the reconstruction error e

p* = argmin|Wp — p|?
b ———

e

The reconstruction error € must be perpendicular to range of W.

0=WTe=WT"(Wu*—p)
Normal equations
WTp=wTwp*
Pseudoinverse solution
pt=(WTW)'wTp

suitable for smaller problems
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Minimum-norm solution

for underdetermined systems or noisy data

Add regularization D

p* = argmin|Wa — p|[2 + A Dy
[

e

Normal equations
WTp = (W'W+AD'D)p*
Pseudoinverse solution

gt = (WTW 4+ ADTD) 'WTp
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[terative methods

Principles
» Start from an initial guess of p
» Compare measured projections and simulations
» Correct pixel values to decrease the difference
> lterate until convergence
Properties
» Take advantage of the sparseness (complexity O(N) per iteration)
Low memory complexity (O(M))

>
» — Suitable for large systems of equations
» Early stopping

>

Slower for small problems (compared to direct methods)
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Projection method

Kaczmarz's method

M
pj:ZWUMH j:1727"'aN
i=1

pj = (wj, ) = WJ-TN

28 /49



Projection method

Kaczmarz's method

M
pj:ZWUMH j:1727"'aN
i=1
pj = (wj, ) = WJ-TN
> Affine solution space of equation j

Sj={n R p; = (wj, )}

Normal vector w;
VpeS,p eS;; (w,u—p')y=0
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Projection to an affine space
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Projection to an affine space
Projection onto &;

g" =Ps(h) = arg min g — h|

Moving in the normal direction (minimum change) until hitting S;
g*=h—-)w;
pi = (wj,g")

Solution

_ ((w;, h) — p)
A= (wj, wj)
o _ o (wy.h) —pj)
& = W)

normalized residual

W;j

29/49



Projection method
the algorithm

> Initial solution u(®) (e.g. random)
P> Project sequentially to constraints 1,2,... N, 1,2,...

p® = Ps;p©
1@ = g u®
1@ = g u®

P> Repeat until convergence
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Interpretation of the update

(k+1) _ “(k) _ <ijﬂ(k)> —h
(wj, w;)

pj

ZWUMI: Wj, i >

Iz wj

Projection p; = (wj,u(k)> along ray j
Backprojection of the correction p; along ray j
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Projection
N =2

f;

~
~H instial
guess

f
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Projection method

properties

v

Computationally cheap: one projection cost O(M), applying all constraints
O(MN)

Low-memory complexity: O(M) if wj; can be calculated on the fly.

If a solution exists, the projection method converges to it.

Convergence may be slow.

vVvYyy

If no solution exists, the method may oscillate.
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Projection method improvements

» Constraint ordering

34/49



Projection method improvements

» Constraint ordering

» Under/overrelaxation,

(wWj, ) — pj

_ L0,
H=H (wj, wj)

O<a<?2
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Projection method improvements

» Constraint ordering

» Under/overrelaxation,

(0) _ a<WjaN> “ P

o= p
(wj,wj) 7

O<a<?2

» Incorporating constraints — positivity (u; > 0), zero outside,. . .
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Simplified update rules

» Binary additive case (w;; € {0,1})

>, hi—p;

i,wii=1

Vj,g,f:hk—T, forwkal,l\/j:ZW,-jzl
lj i

» Binary multiplicative case (w;; € {0,1})

Vja gli< = hk for Wy = 1
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Projections by integration
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Projections by integration

pj = /,u(rj cos @ — tsin g, rjsin j + t cos @)dt
Zwu,ul: Wj, i >

p(x) = Z pii(x)
i—1

wij = /w,-(rj cos pj — tsing, rjsin g; + tcos p)dt

pj = AsZu(rj cos @ — tsin g, rjsin ; + t cos @),

k
with t = As k
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Backprojections by integration
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Other iterative methods

vV Yy

vVvyYyy

simultaneous iterative reconstruction (SIRT), Cimmino’s method — block update

simultaneous algebraic reconstruction technique (SART) — bilinear 1, projection
by integration, Hamming window over rays

iterative least-squares technique (ILST)
multiplicative algebraic reconstruction technique (MART)
iterative sparse asymptotic minimum variance (SAMV)

(preconditioned) conjugated gradients (CG) — with regularization for ill-posed
problems

v
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Example

moving heart

filtered back projection iterative (nonlinear)

Courtesy of Biomedizinische NMR Forschungs GmbH
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3D CT
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3D computed tomography

» Technical challenges: power, cooling
» Rotation method (slice by slice)
» Spiral/helix method
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Spiral method

» Acceleration: 10 min — 1 min

Path of Continuously
Rotating X-ray Tube
Relative to the Patient

Direction of
Continuous
Patient Transport

by Couch During
One Rotation
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Spiral method
» Acceleration: 10 min — 1 min
» Pitch:
P=Al/d
Al bed shift per rotation, d slice thickness.
Normally 0 < P < 2. Overlap for P < 1. Typically P = 1.5.
Path of Continuously

Rotating X-ray Tube
Relative to the Patient

Direction of
Continuous
Patient Transport

by Couch During
One Rotation
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Spiral method (2)

£ zref Z+d

Distance along Z-axis

P Interpolation in z axis
» Interpolation wide — 1 turn. Less noise, larger effective slice thickness.
» Interpolation Slim — 1/2 turn, symmetry. More noise, smaller effective slice

thickness.
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Spiral method (2)

» Interpolation in z axis
» Interpolation wide — 1 turn. Less noise, larger effective slice thickness.

» Interpolation Slim — 1/2 turn, symmetry. More noise, smaller effective slice
thickness.
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Multislice acquisition

(a)

» Acceleration
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Multislice acquisition

) : S Interpolation

» Multi-plane reconstruction / multi-slice linear interpolation / multi-slice filtered
interpolation
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Multislice acquisition

(b) Filter width

» Multi-plane reconstruction / multi-slice linear interpolation / multi-slice filtered
interpolation



CT image quality

» Parameters:
> Resolution (0.5 mm)
» Contrast (6H, about 5 — 10 HU.)
» Detection threshold (about 1 mm at AH = 200, 5mm at AH =5).
> Noise (SNR)
» Artifacts
» Scanner defects, malfunctions, operator error
» Metal parts (shadows)
» Motion artifacts
» Partial volume
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Artifact examples
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Radiation dose
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Radiation dose

» Absorbed dose D in units 1 Gy (gray) = 1J/kg.
Before 1 Gy = 100 rad

» Effective dose equivalent (davkovy ekvivalent) Hg [Sv] (sievert)
He = Z wiH; = Z w;c;D;

H = ¢D. Quality factor c is 1 for X-rays and =y rays, 10 for neutrons, 20 for «
particles.

Coefficient w is organ dependent: male/female glands 0.2, lungs 0.12, breast 0.1,

stomach 0.12, thyroid gland 0.05, skin 0.01. >~ w; = 1.
Before 1 Sv = 100 rem
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Radiation dose

» Absorbed dose D in units 1 Gy (gray) = 1J/kg.
Before 1 Gy = 100 rad

» Effective dose equivalent (davkovy ekvivalent) Hg [Sv] (sievert)
He = Z wiH; = Z w;c;D;

H = ¢D. Quality factor c is 1 for X-rays and =y rays, 10 for neutrons, 20 for «
particles.

Coefficient w is organ dependent: male/female glands 0.2, lungs 0.12, breast 0.1,

stomach 0.12, thyroid gland 0.05, skin 0.01. >~ w; = 1.
Before 1 Sv = 100 rem

» Sum the doses
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Radiation dose

» Medical limit (USA) is 50 mSv/year
(limit for a person working with radiation),
corresponding to 1000 chest X-rays,
or 15 head CTs,
or 5 whole body CTs (1 CT~ 10 mSv).
» low-dose CT~ 2 ~ 5mSv, PET= 25 mSv
» In radioactive background about 3 mSv/year (mainly radon).
In Colorado (altitude 1500 ~ 4000 m) about 4.5 mSv/year. Mean dose from
medical imaging 0.3 mSv/year,
about 3 long flights.
» aircrew members have the largest average annual effective dose about 3 mSv of
all US radiation-exposed workers.
Reason: galactic cosmic radiation, which is always present, and
solar particle events, called “solar flares”
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Radiation dose

» Medical limit (USA) is 50 mSv/year
(limit for a person working with radiation),
corresponding to 1000 chest X-rays,
or 15 head CTs,
or 5 whole body CTs (1 CT~ 10 mSv).

» low-dose CT~ 2 ~ 5mSv, PET= 25 mSv

» In radioactive background about 3 mSv/year (mainly radon).
In Colorado (altitude 1500 ~ 4000 m) about 4.5 mSv/year. Mean dose from
medical imaging 0.3 mSv/year,
about 3 long flights.

» aircrew members have the largest average annual effective dose about 3 mSv of
all US radiation-exposed workers.
Reason: galactic cosmic radiation, which is always present, and
solar particle events, called “solar flares”

» cancer related death 20 %. 1 CT=10 mSv — relative increase by 1073 ~ 10~
48 /49



Computed Tomography, conclusions

Excellent spatial resolution

3D image

Fast acquisition

Weak soft tissue contrast (contrast agents available)
Reconstruction algorithm

Radiation dose
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