
The WINNOW Algorithm

An algorithm to learn linearly separable concepts on { 0, 1 }n.

Monotone (no negation) conjunctions and monotone disjunctions are
linearly separable. Non-monotone convertible to monotone by doubling the
number of variables.

WINNOW hypothesis space is Rn, h = [h1, h2, . . . , hn]. hi are “weights”.

Initially h = [1, 1, . . . 1].

Decision rule: decide “yes” if
∑n

i=1 hi · xi > n/2, else “no”.

Similar to the well-known perceptron algo. Main difference is the learning
rule.

Computational Learning Theory Mistake Bound Model 1 / 15



The WINNOW Algorithm: Learning rule

Unlike the perceptron, WINNOW adapts weights multiplicatively.

When an example x is misclassified, h changes to h′:

If x is positive (i.e., “false negative”), double all hi where xi = 1:

h′i = 2hi

If x is negative (i.e., “false positive”), nullify all hi where xi = 1:

h′i = 0

Other weights (∀i , xi = 0) remain same.

Let us develop a mistake bound for WINNOW learning monotone
k-disjunctions, i.e., monotone disjunctions of up to k ∈ N variables.

Computational Learning Theory Mistake Bound Model 2 / 15



The WINNOW Algorithm: Analysis

No weight in h ever becomes negative.

Only doublings and nullifications from the initial h = [1, 1, . . . , 1]

No weight in h ever exceeds n.

Assume for contradiction that some hj ≤ n gets doubled to h′j > n
(i.e., hj > n/2) after an example x .

xj = 1 as otherwise hj would not get doubled.

Doubling occurs only after a false negative so
∑n

i=1 hi · xi ≤ n/2. But
that contradicts hj > n/2 considering none of hi is negative.

Computational Learning Theory Mistake Bound Model 3 / 15



The WINNOW Algorithm: Analysis

The total increase in weights after a false negative x is at most n/2:

n∑
i=1

h′i −
n∑

i=1

hi =
n∑

i=1

(h′i − hi )xi =
n∑

i=1

(2hi − hi )xi =
n∑

i=1

hixi ≤
n

2

first equality due to h′i = hi when xi = 0

second equality due to the doubling rule

last inequality due to the decision rule and the fact that x was
classified negative

The total decrease in weights after a false positive x is larger than n/2
(shown analogically).

Computational Learning Theory Mistake Bound Model 4 / 15



The WINNOW Algorithm: Analysis

For the initial hypothesis,
∑n

i=1 hi =
∑n

i=1 1 = n.

After N false negatives and P false positives (using the results from the
previous page):

0 ≤
n∑

i=1

hi ≤ n +N n

2
− P n

2

thus
P n

2
≤ n +N n

2

i.e. (n > 0),
P ≤ 2 +N

Computational Learning Theory Mistake Bound Model 5 / 15



The WINNOW Algorithm: Analysis

On each false negative, at least one of the k weights corresponding to the
k variables in the concept disjunction gets doubled. (At least one of these
variables must have been true for the disjunction to be true.)

So after N false negatives, one of them (hj) was doubled at least N/k
times so

hj ≥ 2
N
k

i.e.,

lg hj ≥
N
k

We have shown that no hi exceeds n. So lg hj ≤ lg n and

lg n ≥ N
k

Computational Learning Theory Mistake Bound Model 6 / 15



The WINNOW Algorithm: Analysis

So we have a bound for the false negatives

N ≤ k lg n

and since we have shown that P ≤ 2 +N , we have a total mistake bound

P +N ≤ 2 + 2k lg n

The lg n factor makes WINNOW much faster than the generalization
algorithm or the perceptron when k is a small (k ≪ n) constant.

k ≪ n means a “sparse” target concept disjunction—many irrelevant
attributes.

Computational Learning Theory Mistake Bound Model 7 / 15



The Halving Algorithm (Version Space)

Maintains a finite set of hypotheses H (“version space”) and on each
example x , deletes from it all hypotheses that misclassify it.

H′ = { h ∈ H : h(x) = c(x) }

Decides by majority vote among the current H, i.e., “yes” iff

| { h ∈ H : h(x) = 1 } | > | { h ∈ H : h(x) = 0 } |

On each mistake, at least half of the hypotheses were wrong so at least
half of them get deleted. This gives the mistake bound

lg |H|

where H is the initial version space, i.e., the learner’s hypothesis class.

Computational Learning Theory Mistake Bound Model 8 / 15



The Halving Algorithm (Version Space)

Any finite class C of computable concepts is learnable if lg |C| ≤ poly(n).

Proof: Use the halving algorithm with any H ⊇ C such that
lg |H| ≤ poly(n). 1

That does not mean C is learnable efficiently!

If |C| is exponentially large, then the halving algo is necessarily
non-efficient.

1We overload the symbol H to mean both a class of hypotheses (e.g. conjunctions)
and the concept class they define (subsets of X ).

Computational Learning Theory Mistake Bound Model 9 / 15



Sizes of Some Concept Classes

Conjunctions or disjunctions: |C| = 22n resp. 3n if
contradictions/tautologies excluded.

Both halving and generalization algos have linear mistake bound, but
the latter is efficient

k-disjunctions: |C| =
∑k

i=1

(2n
i

)
resp.

∑k
i=1

(n
i

)
2i ≤ poly(n)

Both halving and WINNOW: logarithmic mistake bound, efficient
k-conjunctions: same, except WINNOW won’t apply

k-DNF, k-CNF: |C| = 2|k-disjunctions| ≤ 2poly(n)

Halving: poly mistake bound, non-efficient
Reduction to monotone conjuctions (disjuctions): poly m.b., efficient

Computational Learning Theory Mistake Bound Model 10 / 15



VC Dimension

We say that concept class C shatters a set of instances X ′⊆ X if for every
subset X ′′ ⊆ X ′ there is a concept C ∈ C such that C ∩ X ′ = X ′′.

In other words, X ′ is shattered by C if it can be split by concepts from C in
all 2|X

′| possible ways.

The VC-dimension of C denoted VC(C) is the size of the largest subset of
X shattered by C:

VC(C) = max { | X ′| : C shatters X ′, X ′ ⊆ X }

VC(H) for a hypothesis class H defined analogically.

Computational Learning Theory Mistake Bound Model 11 / 15



Determining VC-Dimension: Example

If some X ′ ⊆ X , |X ′| = d shattered by C then VC(C) ≥ d .

If none X ′ ⊆ X , |X ′| = d shattered by C then VC(C) < d .

Example: C = half-planes in R2 (i.e., linear separation)

Some 3 points can be shattered so VC(C) ≥ 3.

Computational Learning Theory Mistake Bound Model 12 / 15



Determining VC-Dimension: Example

No 4 points can be shattered. Obvious if 3 in line. Otherwise two
cases possible:

One point in the middle No point in the middle

In both cases, the colored subset cannot be separated by a line. So
VC(C) < 4

We have VC(C) ≥ 3 and VC(C) < 4, thus VC(C) = 3.

Generally, VC(half-planes in Rn) = n + 1

Computational Learning Theory Mistake Bound Model 13 / 15



Poly VC-Dimension Necessary for Learnability

Concept class C on X is learnable only if VC(C) ≤ poly(n).

Proof: There exists a set of VC(C) instances from X shattered by C so
there exists a sequence x1, x2, . . . xVC(C) of instances such that for any
sequence of the learner’s decisions there is a concept c ∈ C making all
these decisions wrong.

So lg |C| ≤ poly(n) implies VC(C) ≤ poly(n) but not the other way around.

VC(C) may be finite (even poly(n)) even if |C| = ∞!

Computational Learning Theory Mistake Bound Model 14 / 15



PAC Learning Model

PAC = Probably Approximately Correct

Main differences from the mistake bound model:

A “batch” style of learning rather than “online”:

A training set of examples is provided to the learner.
The learner outputs a hypothesis.

Assumes an arbitrary probability distribution on X from which
examples are drawn mutually independently (“i.i.d. assumption”).

No bound on the total number of mistakes, instead the output
hypothesis should have a bounded error rate (mistake probability).

Probability of failure (good hypothesis not found) also bounded.

Size of the training set only polynomial in n and the inverse of the
two bounds.

Computational Learning Theory PAC Model 15 / 15


	Computational Learning Theory
	Intro
	Mistake Bound Model
	PAC Model


