Tracking with Correlation Filters

Lecture for AE4M33MVP

Acknowledgement to João F. Henriques from Institute of Systems and Robotics University of Coimbra for providing materials for this presentation

Lecture Overview

- Discriminative tracking
- Connection of correlation and the discriminative tracking
- Brief history of correlation filters
- Breakthrough by MOSSE tracker
- Why MOSSE works? (connection of correlation filters and machine learning)
 - Circulant matrices
 - Ridge Regression
- Kernelized Correlation Filters

Discriminative Tracking

Discriminative Tracking

- How to get training samples for the classifier?
- Standard approach:
 - bloxes with high overlap with the $GT \to Pos.$ samples
 - bboxes far from the $GT \to Neg.$ samples

What with the samples in the unspecified area?

Let's have a linear classifier with weights w

$$y = \mathbf{w}^T \mathbf{x}$$

During tracking we want to evaluate the classifier at subwindows \mathbf{x}_i :

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

Then we can concatenate y_i into a vector \mathbf{y} (i.e. response map)

This is equivalent to **cross-correlation** formulation which can be computed efficiently in Fourier domain

$$y = x \circledast w$$

• Note: Convolution is related; it is the same as cross-correlation, but with the flipped image of \mathbf{w} ($\mathbf{P} \to \mathbf{d}$).

The Convolution Theorem

"Cross-correlation is **equivalent** to an element-wise product in Fourier domain"

$$y = x \circledast w$$

$$\iff$$

$$\hat{\mathbf{y}} = \hat{\mathbf{x}}^* \times \hat{\mathbf{w}}$$

- where:
 - $\hat{\mathbf{v}} = \mathcal{F}(\mathbf{v})$ is the Discrete Fourier Transform (DFT) of \mathbf{y} . (likewise for $\hat{\mathbf{x}}$ and $\hat{\mathbf{w}}$)
 - × is element-wise product
 - * is complex-conjugate (i.e. negate imaginary part).

• Note that cross-correlation, and the DFT, are cyclic (the window wraps at the image edges).

The Convolution Theorem

"Cross-correlation is **equivalent** to an element-wise product in Fourier domain"

$$\mathbf{y} = \mathbf{x} \circledast \mathbf{w} \qquad \Longleftrightarrow \qquad \hat{\mathbf{y}} = \hat{\mathbf{x}}^* \times \hat{\mathbf{w}}$$

In practice:
$$\mathbf{x} \longrightarrow \mathcal{F} \longrightarrow \overset{\hat{\mathbf{x}}}{\longrightarrow} \overset{\hat{\mathbf{x}}^*}{\longrightarrow} \overset{\hat{\mathbf{y}}}{\longrightarrow} \mathcal{F}^{-1} \longrightarrow \mathbf{y}$$

$$\mathbf{w} \longrightarrow \mathcal{F} \longrightarrow \overset{\hat{\mathbf{w}}}{\longrightarrow} \mathbf{w}$$

- Can be orders of magnitude faster:
 - For $n \times n$ images, cross-correlation is $\mathcal{O}(n^4)$.
 - Fast Fourier Transform (and its inverse) are $\mathcal{O}(n^2 \log n)$.

The Convolution Theorem

"Cross-correlation is **equivalent** to an element-wise product in Fourier domain"

$$\mathbf{y} = \mathbf{x} \circledast \mathbf{w}$$

$$\iff$$

$$\hat{\mathbf{y}} = \hat{\mathbf{x}}^* \times \hat{\mathbf{w}}$$

Conclusion:

The evaluation of any linear classifier can be accelerated with the Convolution Theorem. (Not just for tracking.)

- "linear" can become non-linear using kernel trick in some specific cases (will be discussed later)
- Q: How the **w** for correlation should look like? What about **training**?

Q: How the **w** for correlation should look like? What about **training**?

Objective

- Intuition of requirements of cross-correlation of classifier (filter) **w** and a training image x
 - ^ high peak near the true location of the target
 - Low values elsewhere (to minimize false positive)

 $\mathbf{x} \circledast \mathbf{w}$

Minimum Average Correlation Energy (MACE) filters, 1980's

Bring average correlation output towards 0:

$$\min_{\mathbf{w}} \|\mathbf{x} \circledast \mathbf{w}\|^2$$

except for target location, keep the peak value fixed:

subject to:
$$\mathbf{w}^T \mathbf{x} = 1$$

This produces a **sharp peak** at target location with closed form solution:

$$\widehat{\mathbf{w}} = rac{\widehat{\mathbf{x}}}{\widehat{\mathbf{x}}^* imes \widehat{\mathbf{x}}}$$

- $\widehat{\mathbf{w}} = \frac{\widehat{\mathbf{x}}}{\widehat{\mathbf{x}}^* \times \widehat{\mathbf{x}}}$ $\widehat{\mathbf{x}}^* \times \widehat{\mathbf{x}}$ is called the **spectrum** and is real-valued.
 division and product (×) are element-wise.
- Sharp peak = good localization! Are we done?

The MACE filter suffer from 2 main issues:

- Hard constraints easily lead to overfitting.
 - **UMACE** ("Unconstrained MACE") addresses this by removing the hard constraints and require to produce a high average correlation response on positive samples. However, it still suffer from the 2nd problem.
- Enforcing a sharp peak is too strong condition; lead to overfitting

• Gaussian-MACE / MSE-MACE – peak to follow a 2D Gaussian shape

$$\min_{\mathbf{w}} \|\mathbf{x} \circledast \mathbf{w} - \mathbf{g}\|^2$$

subject to: $\mathbf{w}^T \mathbf{x} = 1$

• In the original method (1990's), the minimization was still subject to the MACE hard constraint.

(It later turned out to be unnecessary!)

Sharp vs. Gaussian peaks

Training image:

Naïve filter $(\mathbf{w} = \mathbf{x})$

Classifier (\mathbf{w})

Output $(\mathbf{w} * \mathbf{x})$

- Very broad peak is hard to localize (especially with clutter).
- State-of-the-art classifiers (e.g. SVM) show **same** behavior!

Sharp vs. Gaussian peaks

Training image:

Naïve filter $(\mathbf{w} = \mathbf{x})$

Sharp peak (UMACE)

Classifier (\mathbf{w})

Output $(\mathbf{w} * \mathbf{x})$

- A very sharp peak is obtained by emphasizing small image details (like the fish's scales here).
- generalizes poorly: fine scale details that are usually not robust

Sharp vs. Gaussian peaks

Training image:

Classifier (\mathbf{w})

Naïve filter

- A good compromise.
- Tiny details are ignored.
 - focuses on larger, more robust
 - structures.

Min. Output Sum of Sq. Errors (MOSSE)

- Presented by David Bolme and colleagues at CVPR 2010
- Tracker run at speed over a 600 frames per second
- vor simple to implement
 - no complex features only row pixel values
 - only FFT and element-wise operation

performance similar to the most sophisticated tracker (at that time)

How does it work?

Use only the "Gaussian peak" objective (no hard constraints)

$$\min_{\mathbf{w}} \|\mathbf{x} \circledast \mathbf{w} - \mathbf{g}\|^2 \mathbf{g} = \mathbf{g}$$

Found the following solution using the Convolution Theorem:

$$\widehat{\mathbf{w}} = \frac{\widehat{\mathbf{g}}^* \times \widehat{\mathbf{x}}}{\widehat{\mathbf{x}}^* \times \widehat{\mathbf{x}} + \lambda}$$

 $(\lambda = 10^{-4} \text{ is artificially added to prevent divisions by } 0)$

No expensive matrix operations! \Rightarrow only FFT and element-wise op.

Implementation aspects

Cosine (or sine) window preprocessing

- image edges smooth to zero → the filter sees an image as a "cyclic" (important for the FFT)
- gives more importance to the target center.
- Simple update

$$\widehat{\mathbf{w}}_{\text{new}} = \frac{\widehat{\mathbf{g}}^* \times \widehat{\mathbf{x}}}{\widehat{\mathbf{x}}^* \times \widehat{\mathbf{x}} + \lambda}$$

$$\widehat{\mathbf{w}}_t = (1 - \eta)\widehat{\mathbf{w}}_{t-1} + \eta\widehat{\mathbf{w}}_{\text{new}}$$

Train a MOSSE filter $\widehat{\mathbf{w}}_{new}$ using the new image $\widehat{\mathbf{x}}$.

Update previous solution $\widehat{\mathbf{w}}_{t-1}$ with $\widehat{\mathbf{w}}_{\text{new}}$ by linear interpolation.

Implementation aspects

Scale adaptation

Scale Input image Detection output

- Extract patches with different scales and normalize them the same size
- Run classification; use bounding box with the highest response

Circulant matrices

is a tool that connects **correlation filters** with **machine learning**

$$\min_{\mathbf{w}} \|\mathbf{x} \circledast \mathbf{w} - \mathbf{g}\|^2 \xrightarrow{\text{replace correlation with a special matrix } C(\mathbf{x})} \longrightarrow \min_{\mathbf{w}} \|C(\mathbf{x})\mathbf{w} - \mathbf{g}\|^2$$

 $C(\mathbf{x})$ is a circulant matrix:

$$C(u) = egin{bmatrix} u_0 & u_1 & u_2 & \cdots & u_{n-1} \ u_{n-1} & u_0 & u_1 & \cdots & u_{n-2} \ u_{n-2} & u_{n-1} & u_0 & \cdots & u_{n-3} \ \vdots & \vdots & \vdots & \ddots & \vdots \ u_1 & u_2 & u_3 & \cdots & u_0 \end{bmatrix}$$

Circulant matrices

is a tool that connects **correlation filters** with **machine learning**

We can see X = C(x) as a dataset with cyclically shifted versions of the image **x**

$$X = \begin{bmatrix} (P^0 \mathbf{x})^T \\ (P^1 \mathbf{x})^T \\ \vdots \\ (P^{n-1} \mathbf{x})^T \end{bmatrix}$$

- P is a permutation matrix that shifts the pixels in vertical/horizontal direction by 1 element.
- Arbitrary shift i obtained with power $P^{i}\mathbf{x}$.
- Cyclic: $P^n \mathbf{x} = P^0 \mathbf{x} = \mathbf{x}$.

Circulant matrices

is a tool that connects **correlation filters** with **machine learning**

Similar role to the Convolution Theorem

$$X = \begin{bmatrix} (P^0 \mathbf{x})^T \\ (P^1 \mathbf{x})^T \\ \vdots \\ (P^{n-1} \mathbf{x})^T \end{bmatrix}$$

$$\mathcal{F}(X) = \begin{bmatrix} \hat{\mathbf{x}}_1 & 0 & \cdots & 0 \\ 0 & \hat{\mathbf{x}}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \hat{\mathbf{x}}_n \end{bmatrix}$$

$$\Rightarrow \text{ Becomes}$$

$$\text{diagonal in}$$

$$\text{Fourier domain}$$

Most of the "data" is 0 and can be ignored! ⇒ Massive speed-up

Ridge Regression Formulation

- = Least-Squares with regularization (avoids overfitting!)
- Consider simple Ridge Regression (RR) problem:

$$\min_{\mathbf{w}} \|X\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|^2$$

has closed-form solution: $\mathbf{w} = (X^TX + \lambda I)^{-1}X^T\mathbf{y}$

We can replace $X = C(\mathbf{x})$ (circulant data), and $\mathbf{y} = \mathbf{g}$ (Gaussian targets).

Diagonalizing the involved circulant matrices with the DFT yields:

$$\widehat{\mathbf{w}} = \frac{\widehat{\mathbf{x}}^* \times \widehat{\mathbf{y}}}{\widehat{\mathbf{x}}^* \times \widehat{\mathbf{x}} + \lambda} \Longrightarrow$$

- Exactly the MOSSE solution!
- good learning algorithm (RR) with lots of data (circulant/shifted samples).

Kernelized Correlation Filters

- Circulant matrices are a very general tool which allows to replace standard operations with fast Fourier operations.
- The same idea can by applied e.g. to the **Kernel Ridge Regression**: with K kernel matrix $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$ and dual space representation

$$\alpha = (K + \lambda I)^{-1} \mathbf{y}$$

For many kernels, circulant data \Rightarrow circulant K matrix

$$K = C(\mathbf{k}^{\mathbf{x}\mathbf{x}})$$
 where $\mathbf{k}^{\mathbf{x}\mathbf{x}}$ is kernel auto-correlaton and the first row of K (small, and easy to compute)

Diagonalizing with the DFT for learning the classifier yields:

$$\widehat{\alpha} = \frac{\widehat{\mathbf{y}}}{\widehat{\mathbf{k}}^{\mathbf{x}\mathbf{x}} + \lambda}$$
 \Rightarrow Fast solution in $\mathcal{O}(n \log n)$.

Typical kernel algorithms are $\mathcal{O}(n^2)$ or higher!

Kernelized Correlation Filters

The $\mathbf{k}^{\mathbf{x}\mathbf{x}'}$ is kernel correlation of two vectors \mathbf{x} and \mathbf{x}'

$$k_i^{\mathbf{x}\mathbf{x}\prime} = \kappa(\mathbf{x}', P^{i-1}\mathbf{x})$$

For Gaussian kernel it yields:

multiple channels can be concatenated to the vector
$$\mathbf{x}$$
 and then sum over in this term

$$\mathbf{k}^{\mathbf{x}\mathbf{x}'} = \exp\left(-\frac{1}{\sigma^2}(\|\mathbf{x}\|^2 + \|\mathbf{x}'\|^2 - 2\mathcal{F}^{-1}(\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}}'))\right)$$

- Evaluation on subwindows of image z with classifier α and model x:
- $K^{\mathbf{z}} = C(\mathbf{k}^{\mathbf{x}\mathbf{z}})$
- $\mathbf{f}(\mathbf{z}) = \mathcal{F}^{-1}(\hat{\mathbf{k}}^{xz} \odot \widehat{\boldsymbol{\alpha}})$
- Update classifier α and model x by linear interpolation from the location of maximum response f(z)
- Kernel allows integration of more complex and multi-channel features

Kernelized Correlation Filters

KCF Tracker

- verv few hyperparameters
- code fits on one slide of the presentation!
- Use HoG features (32 channels)
- ~300 FPS
- Open-Source (Matlab/Python/Java/C)

Training and detection (Matlab)

```
function alphaf = train(x, y, sigma, lambda)
  k = kernel_correlation(x, x, sigma);
  alphaf = fft2(y) ./ (fft2(k) + lambda);
end
function y = detect(alphaf, x, z, sigma)
  k = kernel_correlation(z, x, sigma);
  y = real(ifft2(alphaf .* fft2(k)));
end
function k = kernel_correlation(x1, x2, sigma)
  c = ifft2(sum(conj(fft2(x1)) .* fft2(x2), 3));
  d = x1(:)'*x1(:) + x2(:)'*x2(:) - 2 * c;
  k = exp(-1 / sigma^2 * abs(d) / numel(d));
end
```

Sum over channel dimension in kernel computation

Variations of KCF trackers

Basic

- Harriques et al. CSK
 - raw grayscale pixel values as features
- Harriques et al. KCF
 - HoG multi-channel features

Further work

- \blacksquare Panalljan et al. DSST:
 - PCA-HoG + grayscale pixels features
 - filters for translation and for scale (in the scale-space pyramid)
- Li ot ol. SAMF:
 - HoG, color-naming and grayscale pixels features
 - quantize scale space and normalize each scale to one size by bilinear inter. \rightarrow only one filter on normalized size

Variations of KCF trackers

Further work

- Panalljan et al. –SRDCF:
 - spatial regularization in the learning process
 - \rightarrow limits boundary effect
 - → penalize filter coefficients depending on their spatial location
 - allows to use much larger search region
 - more discriminative to background (more training data)

CNN-based Correlation Trackers

- Ma of al.
 - features : VGG-Net pretrained on ImageNet dataset extracted from third, fourth and fifth convolution layer
 - for each feature learn a linear correlation filter
 - coarse-to-fine approach from $5\rightarrow 3$ layer
- Nam at al. MDNet:
 - CNN classification (3 convolution layers and 2 fully connected layers) learn on tracking sequences with bbox regression

Results of KCF-based trackers

Result on recent standard evaluation benchmarks

