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Lecture Overview

B Discriminative tracking

W Connection of correlation and the discriminative tracking

W Brief history of correlation filters
B Breakthrough by MOSSE tracker

B Why MOSSE works?
(r~mmaction of correlation filters and machine learning)

e (ivculant matrices

® Ridge Regression

B Kernelized Correlation Filters
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Discriminative Tracking

1 samples

labels

Classify subwindows
to find target

Classifier —
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Discriminative Tracking

® How to get training samples for the classifier?

W Stendard approach:
@ hhoxes with high overlap with the GT — Pos. samples
® bboxes far from the GT — Neg. samples

t=0

m Neg. samples
m Pos. samples
Unspecified

® What with the samples in the unspecified area?
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Connection to Correlation

W Let’s have a linear classifier with weights w

y =w'x

B During tracking we want to evaluate
the classifier at subwindows X, :

— T
Yi = W X;

B Then we can concatenate y; into a vector y
(i.e. response map)

M This is equivalent to cross-correlation formulation which can be
computed efficiently in Fourier domain

y=X®Ww

« Note: Convolution is related; it is the same as cross-correlation,
but with the flipped image of w (" = ).
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Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

N\

y=x®w & 0 §=X"XW

M where:

® ¥ = F(v) is the Discrete Fourier Transform (DFT) of y.
(likewise for X and W)

® X is element-wise product

® " is complex-conjugate (i.e. negate imaginary part).

« Note that cross-correlation, and the DFT, are cyclic
(the window wraps at the image edges).

 AE4AM33MVP- Tracking with Correlation Filters slides material by Joao F. Henriques '



Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

N\

y=x®w & §=X"XW

B In practice: X —> E —> _Xl'

W ('~ ke orders of magnitude faster:
e T'~r n X 1 images, cross-correlation is O(n*).

® Fast Fourier Transform (and its inverse) are O(n?logn).
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Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

N\

y=x®w & 0 §=X"XW

® Conclusion:

The evaluation of any linear classifier can be accelerated
with the Convolution Theorem. (Not just for tracking.)

W “linear” can become non-linear using kernel trick in some specific cases
(will be discussed later)

B Q: How the w for correlation should look like? What about training?
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Connection to Correlation W

® Q: How the w for correlation should look like? What about training?

Objective

High values
Unspecified

i

Low values

B Intuition of requirements of cross-correlation of classifier(filter) w and a
troining image X
@ A high peak near the true location of the target

® Low values elsewhere (to minimize false positive)
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Brief History of Correlation Filters W

Minimum Average Correlation Energy (MACE) filters, 1980’s
X®w

B Bring average correlation output towards 0:

min ||x ® w||?
W

except for target location, keep the peak value fixed:

T

subject to: wix =1

W This produces a sharp peak at target location
with closed form solution:
X « X" XX is called the spectrum and is real-valued.

X" XX * division and product (X) are element-wise.

W =

W Sharp peak = good localization! Are we done?
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Brief History of Correlation Filters W

The MACE filter suffer from 2 main issues:
1. Hard constraints easily lead to overfitting.

o UMACE (“Unconstrained MACE”) addresses this by removing the
hard constraints and require to produce a high average correlation
response on positive samples. However, it still suffer from the 2"d
problem.

2. Wwfarcing a sharp peak is too strong condition; lead to overfitting
® Gaussian-MACE / MSE-MACE - peak to follow a 2D Gaussian

h
shape A
il.O
> 0.0

® In the original method (1990’s), the minimization was still subject to
the MACE hard constraint.
(It later turned out to be unnecessary!)

min [|x ® w — g||* -
w

subjectto: wix =1
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Brief History of Correlation Filters

Sharp vs. (Gaussian peaks

- 1.0
Training image: x = i

0.0

Naive filter
(W =x)

Classifier

(W)

[« Verv broad peak is hard to localize

Output (especially with clutter).

(W * X) « State-of-the-art classifiers

(e.g. SVM) show same behavior!
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Brief History of Correlation Filters

Sharp vs. (Gaussian peaks

1.0
Training image: x = i
0.0

Naive filter  Sharp peak
(W = Xx) (UMACE)

Classifier

(W)

« A very sharp peak is obtained
by emphasizing small image
details (like the fish’s scales
here).

- generalizes poorly:; fine scale
details that are usually not
robust

Output
(W *X)

 AE4AM33MVP- Tracking with Correlation Filters slides material by Joao F. Henriques '



Brief History of Correlation Filters

Sharp vs. (Gaussian peaks

Training image: x = .

Naive filter
(W =x)

(UMACE)

Classifier

(W)

Output
(W *X)

il.O
0.0

Sharp peak Gaussian peak
(GMACE)

-

~ % | ° A good compromise.
'f';:. "‘-I - Tinv details are
T L ignored.
- focuses on larger,
more robust
structures.
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Breakthrough by MOSSE tracker

Min. Output Sum of Sq. Errors (MOSSE)
B Presented by David Bolme and colleagues at CVPR 2010

W Tracker run at speed over a
600 frames per second

B vo+r simple to implement

® no complex features only
»~wy pixel values

® only FFT and element-wise operation

W performance similar to the most sophisticated tracker (at that time)
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Breakthrough by MOSSE tracker

How does it work?

W Use only the “Gaussian peak” objective (no hard constraints)

1.0
m&ﬂllX@W—gllzw g- i
0.0

® Found the following solution using the Convolution Theorem:

W = —
(A = 10~* is artificially added to prevent divisions by 0)

¥ No expensive matrix operations! = only FFT and element-wise op.
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Implementation aspects

W Cosine (or sine) window preprocessing

® image edges smooth to zero
— the filter sees an image as a “cyclic” (important for the FFT)

® gives more importance to the target center.

W Simple update

g" X X Train a MOSSE filter Wyew

— -

X*XX+ A1 using the new image X.

AN\
Wnew

Update previous solution Ws_4

W = (1 —1n)We_g + NWhew N NN . . )
with Wyeyw by linear interpolation.

~ AE4AM33MVP- Tracking with Correlation Filters slides material by Joao F. Henriques '



Breakthrough by MOSSE tracker

Implementation aspects
Scale

W Scale adaptation

X 1.1

® Extract patches with different scales and normalize them
tn the same size

® Run classification; use bounding box with the highest response —

 AE4M33MVP- Tracking with Correlation Filters slides material by Joao F. Henriques '



Why MOSSE works? W

is a tool that connects correlation filters with machine learning

Circulant matrices

replace correlation with
a special matrix C(X)

m“i’n Ix®w-g|? — > m“i’n IC(x)w — g|?

C(x) is a circulant matrix:
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Why MOSSE works? W

is a tool that connects correlation filters with machine learning

Circulant matrices

B We can see X = C(x) as a dataset with cyclically shifted versions of

the image x

« P is a permutation matrix that

C(PYx)T T shifts the pixels in vertical /horizontal
y=| (P’ direction by 1 element.
( P"‘zlx)T - Arbitrary shift i obtained with power P'X.

- Cyclic: P™"x = P%% = x.

P?%x

 AE4M33MVP- Tracking with Correlation Filters slides material by Joao F. Henriques '



Why MOSSE works? W

is a tool that connects correlation filters with machine learning

Circulant matrices

M Similar role to the Convolution Theorem

i (POX)T 7 X, 0 - 07
¥ = (Plx)T T(X)= 0 X.Z 0
I (Pn_.1X)T | 0 0 )’Zn_
Data matrix Becomes
is = diagonal in
circulant Fourier domain

W Most of the “data” is 0 and can be ignored! = Massive speed-up
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Why MOSSE works?

Ridge Regression Formulation

= Least-Squares with regularization (avoids overfitting!)

B Consider simple Ridge Regression (RR) problem:
min [[Xw — yl|? + AflwlP

has closed-form solution: w = (XX + AI)"1XTy
We can replace X = C(x) (circulant data), and y = g (Gaussian targets).

B Diagonalizing the involved circulant matrices with the DFT yields:

R X § - Exactly the MOSSE solution!
W= XK+ A = . good learning algorithm (RR)
with lots of data (circulant/shifted
samples).
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Kernelized Correlation Filters W

W Circulant matrices are a very general tool which allows to replace
standard operations with fast Fourier operations.

B The same idea can by applied e.g. to the Kernel Ridge Regression:

with K kernel matrix K;; = k(x;, x;) and dual space representation

a=(K+A)1y

® For many kernels, circulant data = circulant K matrix

K = C(K*¥)- where K** is kernel auto-correlaton and
the first row of K (small, and easy to compute)

W Diagonalizing with the DF'T for learning the classifier yields:

§ Fast solution in O(nlogn).
T xx = Typical kernel algorithms are
oo+ ical ker
O(n*) or higher!

a =
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Kernelized Correlation Filters

B The K*¥ is kernel correlation of two vectors X and X’

XX/ __ / i—1
k™ =x(x, P'x)
multiple channels can be concatenated to

B FOI' Gaussian kernel it y1€1dS the vector x and then sum over in this term

/

/ 1 !/ —_ Ak Y4
0 = exp (~ 2 (Il + X2 — 277 (%" © 2)))

W Evaluation on subwindows of image z with classifier a and model x:
1. K*=C(k*)
2. f(2)=F k¥ QO @)

W Update classifier & and model x by linear interpolation from the location
of maximum response f(z)

B Kernel allows integration of more complex and multi-channel features
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Kernelized Correlation Filters W

KCF Tracker

W very few
hyperparameters

B code fits on one slide
of the presentation!

B Use HoG features
(32 channels)

Training and detection (Matlab)

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = (y) ./ ( (k) + lambda);
end

function y = detect(alphaf, x, z, sigma)

k = kernel_correlation(z, x, sigma);
y = ( (alphaf .* (k)));
end

function k = kernel_correlation(x1, x2, sigma)

(sun(eon i (FFi2(x1)) .* (Fi2(x2), 3));

C =
d = x1(:)"*x1(:) + x2(:)"*x2(:) - 2 * c;
® 300 FPS k = exp(-1/ sigma2 * abs(d) / <d>>s\
end
¥ Open-Source Sum over channel dimension
(Matlab/Python/Java/C) in kernel computation
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Variations of KCF trackers

Basic
W Hernriques et al. — CSK

® raw grayscale pixel values as features
W Howriques et al. — KCF

® HoG multi-channel features

Further work
W De»eolljan et al. — DSST:

e DOA-HoG + grayscale pixels features

e filters for translation and for scale (in the scale-space pyramid)
W [iot -], - SAMF:

@ Hn@G, color-naming and grayscale pixels features

® quantize scale space and normalize each scale to one size by bilinear
inter. — only one filter on normalized size
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Variations of KCF trackers W
Further work

W De»alljan et al. -SRDCEF"

® spatial regularization in the learning process
— limits boundary effect
— penalize filter coefficients depending on their spatial location

e ~llgws to use much larger search region

® more discriminative to background (more training data)

CNN-based Correlation Trackers
W Mo ot g].

® features : VGG-Net pretrained on ImageNet dataset extracted from
third, fourth and fifth convolution layer

e fnr each feature learn a linear correlation filter
® coarse-to-fine approach from 5—3 layer
B Nom at g]. — MDNet:

® CNN classification (3 convolution layers and 2 fully connected layers)
learn on tracking sequences with bbox regression
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Results of KCF-based trackers

Result on recent standard evaluation benchmarks

DSST* B.77T
SAMF* 9.10
KCF*

DSST, SAMF, KCF, DGT, PLT,,, PLT,,
* o P> % (o)

XA 0<¢

baseline 1 i DGT 0.48
N R P ° PLT_14* 051
1op- e N 10 PLT_13 10.62
e ASMS* 12.85
B R RICh (I ERR 15 ¢$ [HMM-TxD* [14.33
g o b ols MCT 14.61
§20 ......... VQ\ ..... _zg ......... o e %20 A — —
< S AT < (1) MDNet
VOT2014 D pe g 2 (2) DeepSRDCF
R (3) EBT -
30-5 ......... ‘ IIIIIIII IIIIIIII IIIIIIIII IIIIII x‘ IIIIIIII ; IIIIIII 30 - N N - - N N (4)SRCDF -ﬂ
2R N (5)LDP A%
T s s e e e O ]
35 30 25Rb%0 15 10 5 35 30 ZSRb%u 15 10 5 >'w© ﬁ )
MDNet* 4 CNN learned on video sequences
DeepSRDCF 4 Corr. Filter + CNN feats
4q ¢C0 >D": EBT * Edgebox features+SSVM-+color hist.

o SRDCF Corr. Filter + color names + HoG
VOT2015

LDP x Part-based Corr. Filter

sPST A Flow + Edgebox feats + SVM
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