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Talk outline 

● Standard Single Class Single Instance Fitting Problem (SCSI) 
 
 

                              ) 

 

● Robust Single Class Single Instance Fitting Problem (R-SCSI) 
 
                           )      

 

● Single Class Multiple Instance Fitting Problem (SCMI) 
 
                           ) 

 

● Multiple Class Multiple Instance Fitting Problem (MCMI) 
 
                           ) 

 

 

 

 



● detection of geometric primitives 

 

 

● epipolar geometry estimation 

● detection of planar surfaces 

 

 

● multiple motion segmentation 

 

 

 

● Interpretation of lidar scans 

 

 

 

 

Single/Multi-Class Single/Multi-Instance Fitting Applications 



What is RANSAC? 

● RANSAC = RANdom SAmple Consensus 

● M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for 
model fitting with applications to image analysis and automated cartography. 
CACM, 24(6):381–395, June 1981. 

 

● Example: Finding a line in 2D 

– Not all input points are on the line. 

– Finding a line implicitly 

   divides points to inliers (=those  

   on a line) and outliers (=those  

   not on a line) 

– Due to noise, “on a line” actually  

 means inside a narrow strip around  

 the line 

 

 

  

 

 

 

 

 



Example: Line Fitting 

First, let us introduce a line parametrization and define 
the “strip around the line” formally:  

𝜎 
𝜎 



Line Fitting, Inliers Only: Easy! 

Data points 

 

 

Find the line which  

“best fits” these points.  

 

 

 

  

 



Line Fitting, Inliers Only: Easy! 

Data points 

 

 

Find the line which 
“best fits” these points.  

Optimization: Find best 
line with parameters    : 

 

 

For  

This is easily solvable by 
Singular Value 
Decomposition (SVD) 

 

 

 

 

  



General Case with Outliers, Example 1 

Least squares fit 

Example 1 



General Case with Outliers, Example 2 

Least squares fit 

Example 2 



 

● L set of data points 

Find: 

 

 

● No outliers: 

● For robust fitting, use instead: 

 

● Such cost function is non-convex (and the optimization task is to minimize 
the number of outliers) 

● How to find optimal line parameters?  

   

 

 

 

 

 

General Case with Outliers, Robust Cost Function 



RANdom SAmple Consensus - RANSAC 

Select sample of m points  
at random (here m=2) 



RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
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Evaluate the distance from 
model for each data point 
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the current hypothesis 
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RANSAC 

Select sample of m points 
at random 
 
Estimate model parameters  
from the data in the sample 
 
Evaluate the distance from 
model for each data point 
 
Select data that support  
the current hypothesis 
 
Repeat sampling 



RANSAC [Fischler and Bolles 1981] 

SAMPLING 

VERIFICATION 

SO-FAR-THE-BEST 

Cost function for 
single data point x 



RANSAC – how many samples? 

● N   Number of points 

● Q  Number of inliers, Q = N – J*  

● m   Size of sample 

● ² = Q/N     Inlier ratio 

 

Probability of all-inlier (uncontaminated) sample:  

 

 

 

Mean time for hitting all-inliers sample is proportional to 1/P. 

 

 



RANSAC – how many samples? 

● How about this formulation: 

– Set the number of samples k such that at least one pair of points from the 
line has been hit with probability larger than h 

– Equivalently … such that no pair of points from the line has been hit with 
probability lower than 1 - h 

● Q  Number of inliers, Q = N – J*  

● m   Size of sample 

● ² = Q/N     Inlier ratio 

Probability of all-inlier (uncontaminated) sample:  

 

The required confidence in solution:  

  P(bad model k times) = (1 – P(inlier sample))k  < 1 – h 

Finding the solution with confidence h   therefore requires at least k samples: 

                              k ≥ log(1 – h) / log (1 – ²m)  
 

 



RANSAC termination – how many samples? 

● m   Size of sample 

● ² = Q/N     Inlier ratio 

● h  Confidence 

● k   required number of samples  

Probability of all-inlier (uncontaminated) sample:  

                              k ≥ log(1 – h) / log (1 – ²m)  
 

 



RANSAC termination - How many samples? 

Computed for confidences η = 0.95 (first row in each cell),  
η = 0.99 (second row) and η = 0.999 (third row)  

Inlier ratio ² = Q/N  [%] 
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RANSAC Notes 

Pros: 

● extremely popular (>17000 citations in Google Scholar) 

● used in many applications  

● percentage of inliers not needed and not limited 

● a probabilistic guarantee for the solution 

● mild assumptions: ¾ known 

 

Cons: 

● slow if inlier ratio low 

● It was observed experimentally that RANSAC takes several times longer than 
theoretically expected. This is due to noise –  
not every all-inlier sample generates a good hypothesis: 

 

 



RANSAC Variants 

● Cost function:        MLESAC, Huber loss, … 
 

● Outlier threshold s  (how to set it in advance? Or, how to avoid setting it?): 
Least median of Squares, MINPRAN, MAGSAC, … 
 

● Correctness of the results. Degeneracy. 
     Solution: DegenSAC. 
 
● Accuracy (parameters are estimated from minimal samples).  
 Solution: Locally Optimized RANSAC 
 
● Speed: Running time grows with number of data points, number of iterations 

(polynomial in the inlier ratio) 
  Addressing the problem: 
    R-RANSAC (Randomized evaluation), RANSAC with SPRT 

 (WaldSAC),  PROSAC 
  

 



Locally Optimized RANSAC (LO-RANSAC): Problem Intro 

Data: 200 points 

 



LO-RANSAC: Problem Introduction 

Data: 200 points 

Model, 100 inliers 



LO-RANSAC: Problem Introduction 

For simplicity, consider only points belonging to the model (100 points)  



LO-RANSAC: Problem Introduction 

RANSAC 

Hypothesis generation 
from 2 points 

Will every two 
points generate the 
whole inlier set? 

 

This sample: 
 YES. 100 inliers. 

For simplicity, consider only points belonging to the model (100 points)  



LO-RANSAC: Problem Introduction 

RANSAC 

Hypothesis generation 
from 2 points 

Will every two 
points generate the 
whole inlier set? 

 

This sample: 
 NO. 45 inliers. 

For simplicity, consider only points belonging to the model (100 points)  



LO-RANSAC: Problem Introduction 

RANSAC 

Hypothesis generation 
from 2 points 

Will every two 
points generate the 
whole inlier set? 

 

The distribution of the number of inliers obtained 
while randomly sampling inlier points pairs 

For simplicity, consider only points belonging to model (100 points)  



LO-RANSAC 

SAMPLING 

VERIFICATION 

SO-FAR-THE-BEST 

Cost function for 
single data point x 



LO-RANSAC 

SAMPLING 

VERIFICATION 

SO-FAR-THE-BEST 

9: gone 

Cost function for 
single data point x 



LO-RANSAC: Example 

Init 

 



LO-RANSAC: Example 

Init 

Iteration 1 

 



LO-RANSAC: Example 

Init 

Iteration 1 

Iteration 2 

 

 



LO-RANSAC: Example 

Init 

Iteration 1 

Iteration 2 

... 

Iteration 7 

 

 

 



LO-RANSAC: Example 

Init 

Iteration 1 

Iteration 2 

... 

Iteration 7 

... 

Itration 15 

 

 

 

 



LO-RANSAC: Example 

Comparison with model (100 inliers): 



Locally Optimized RANSAC 

Chum, Matas, Obdržálek: Enhancing RANSAC by Generalized Model 
Optimization, ACCV 2004  

Estimation of (approximate) models with lower complexity (less data points in 
the sample) followed by LO step estimating the desired model speeds the 
estimation up significantly. 

The estimation of epipolar geometry is up  to 10000 
times faster when using 3 region-to-region 
correspondences rather than 7 point-to-point 
correspondences. 

Simultaneous estimation of radial distortion 
and epipolar geometry with LO is superior 
to the state-of the art in both speed a 
precision of the model. 

Fish-eye images by Braňo Mičušík 
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LO-RANSAC: Problem Summary 

It was observed experimentally that RANSAC takes several times longer than 
theoretically expected. This is due to the noise – not every all-inlier sample 
generates a good hypothesis. 

 

By applying local optimization (LO) to the-best-so-far hypotheses: 

(i) a near perfect agreement with theoretical performance  

(ii) lower sensitivity to noise and poor conditioning. 

 

The LO is shown to be executed so rarely, log(iter) times,  that it has minimal 
impact on the execution time. 

 

 

 

 

Chum, Matas, Kittler: Locally Optimized RANSAC, DAGM 2003  

 

 



RANSAC – Time Complexity 

Repeat k times  (k is a function of sample size m, number of 
inliers Q, number of data N, and confidence h) 

 1. Hypothesis generation 
•  Select a sample of m data points 
•  Calculate parameters of the model(s) 

 2. Model verification 
•  Find the support (consensus set) by verifying all N 

data points 

Running time: 
 
Note 1: unit of time = time to evaluate 1 point (⇒ evaluating N points takes 
time N).  
Note 2: number of models per sample for our toy, line fitting example, is equal 
to 1. Some tasks (e.g. epipolar geometry estimation) generate different number 
of solutions (models) per sample, depending on the sample data. 7-point 
algorithm, for example, generates up to 3 models.  
 

41 



Randomised RANSAC (R-RANSAC) [Matas, Chum 02] 

Repeat until termination condition is met: 
 1. Hypothesis generation (as before) 
 2a. Model pre-verification Td,d test: 
      Evaluate 𝑑 ≪ 𝑁 data points, reject the model if not all d data points 
 are consistent with the model 
 2b. Model verification 
       Verify the rest of the data points if pre-verification test was successful 
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Example (d=1)  
1. Generate a model (sample 2 points) 
2a. Sample another point ● 
     Does it fall within threshold?  
     No. Go to 1.    
 



Randomised RANSAC (R-RANSAC) [Matas, Chum 02] 

Repeat until termination condition is met: 
 1. Hypothesis generation (as before) 
 2a. Model pre-verification Td,d test: 
      Evaluate 𝑑 ≪ 𝑁 data points, reject the model if not all d data points 
 are consistent with the model 
 2b. Model verification 
       Verify the rest of the data points if pre-verification test was successful 
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Example (d=1)  
1. Generate a model (sample 2 points) 
2a. Sample another point ● 
     Does it fall within threshold?  
     Yes. 
2b. Verify all other points. 
    
 



R-RANSAC Example, Running Time Analysis 

Find a line in 2D points. N=10k, ² = 0.1 (10% inliers.)  
RANSAC:  

Probability of selecting 2 ‘good’ points is 𝜖2. 
Average number of samples to find a good model is 1/𝜖2 = 100.  
For each model, N points are verified.  
Total number of evaluations is 100N = 1M 

44 



R-RANSAC Example, Running Time Analysis 

‘bad’ model, 
random point 
accepted with 
probability≈ 𝟑% 

sought solution, 
random point 
accepted with 
probability 𝟏𝟎% 

Find a line in 2D points. N=10k, ² = 0.1 (10% inliers.)  
R-RANSAC (d=1):  

Probability of selecting 2 ‘good’ points is 𝜖2.  
Probability of selecting inlier point for pre-verification is 𝜖. 
Average number of samples to find a good model is 1/𝜖3 = 1000. 
Probability of a random point passing pre-verification test for a ‘bad’ model is δ = 0.03 

45 

In 1000 samples: 
1000∙𝜖2 = 10 ‘good’ models  
  10∙² = 1     passes pre-verification 
  10∙(1-²)=9  fails pre-verification 
1000∙(1 − 𝜖2) = 990 ‘bad’ models 
  990∙δ = 30   passes pre-verification 
  990∙(1-δ) = 960  fails pre-verification 
 
Total number of evaluations, on average:  
1N (good model, point accepted)  
+ 9 (good model, point rejected)  
+ 30N  (bad model, point accepted)  
+  960  (bad model, point rejected)  
≈ 311k 

 

 



R-RANSAC Example, Running Time Analysis 

‘bad’ model, 
random point 
accepted with 
probability≈ 𝟑% 

sought solution, 
random point 
accepted with 
probability 𝟏𝟎% 

Find a line in 2D points. N=10k, ² = 0.1 (10% inliers.)  
R-RANSAC (d=2):  

Probability of selecting 2 ‘good’ points is 𝜖2.  
Probability of selecting 2 inlier points for pre-verification is 𝜖2. 
Average number of samples to find a good model is 1/𝜖4 = 10000.  
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In 10000 samples:  
10000∙𝜖2 = 100 ‘good’ models  
  100∙𝜖2 = 1     passes pre-verification 
  100∙(1-²) = 99  fails pre-verification 
10000∙(1 − 𝜖2) = 9900 ‘bad’ models 
  9900∙δ2 = 9   passes pre-verification 
  990∙(1- δ2) = 9891 fails pre-verification 
 
Total number of evaluations, on average:  
1N (good model, 2 points accepted)  
+ 99∙2 (good model, point(s) rejected)  
+ 9N  (bad model, 2 points accepted)  
+  9891∙2 (bad model, point rejected)  
≈ 120k 

 
Note: For this case, d=2 is optimal (fastest) 

 



Randomised RANSAC (R-RANSAC) [Matas, Chum 02] 

Speeds up RANSAC; “Randomised” stands for randomised verification 
 
 
Running time (RANSAC  → R-RANSAC): 
 
 
 
 
 
 

V - average number of data points verified 
a - probability that a good model is rejected by Td,d test 
k – number of samples (function of sample size, inlier ratio and confidence)  

47 



Optimal Randomised Strategy 

where  
Hg - hypothesis of a ‘good’ model (≈ from an uncontaminated sample)  
Hb - hypothesis of a ‘bad’ model (≈ from a contaminated sample) 
 - probability of a data point being consistent with an arbitrary model 
 

Optimal (the fastest) test that ensures with probability α that that Hg is not 
incorrectly rejected is  the Sequential probability ratio test (SPRT) [Wald47]   

Model Verification employing Sequential Decision Making 

48 



SPRT  [simplified from Wald 47] 

Properties of SPRT: 

1. probability of rejecting a “good” model α < 1/A 

2. average number of verifications V=C log(A)    

Likelihood ratio 
 
Set (compute) threshold A. Set j=1 
1. Select a point and check whether it is consistent with model 
2. Update likelihood ratio  
3. If λj >A decide the model is ‘bad’, else increment j 
4. If j>N (total number of points) decide model is ‘good’, else go to 1. 

49 



SPRT properties 

Probability of rejecting a “good” model a=1/A 



 WaldSAC  

Running time 

In sequential statistical decision problem decision errors are traded off for time. 
These are two incomparable quantities, hence the constrained optimization.  
 
In WaldSAC, decision errors cost time (more samples) and there is a single  
minimised quantity, time t(A), a function of a single parameter A. 

51 



Optimal test (optimal A) given e and  

Optimal A* found by solving 

Optimal A* 

Computed in several iterations: 



SPRT 

bad model good model 

decision 
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Exp. 1: Wide-baseline matching 



Exp. 2 Narrow-baseline stereo 



Randomised Verification in RANSAC: Conclusions  

 The same  confidence  h  in the solution reached faster (data dependent, 
¼ 10x)  

 No change in the character of the algorithm, it was randomised anyway. 

 Optimal strategy derived using Wald’s theory for known e and . 

 Results with e and   estimated during the course of RANSAC are not 
significantly different. Performance of SPRT is insensitive to errors in the 
estimate. 

•   can be learnt, an initial estimate can be obtained by geometric  
consideration 

• Lower bound on e is given by the best-so-far support 
 

 



PROSAC – PROgressive SAmple Consensus 

● Not all correspondences are created equally 

● Some are better than others 

● Sample from the best candidates first 

1 2 3 4 5 … N-2 N-1 N 

Sample from here 



PROSAC Samples 

l-1 l l+1 l+2 … … 

Draw Tl samples from (1 … l)  

Draw Tl+1 samples from (1 … l+1) 

Samples from (1 … l)  that are not from (1 … l+1) contain  l+1 

Draw Tl+1 - Tl samples of size m-1 and add l+1 



Degenerate Configurations 

Chum, Werner, Matas: Epipolar Geometry Estimation unaffected by dominant 
plane, CVPR 2005  

The presence of degenerate configuration causes RANSAC to fail in estimating 
a correct model, instead a model consistent with the degenerate configuration 
and some outliers is found. 

The DEGENSAC algorithm handles 
scenes with: 

• all points in a single plane 
• majority of the points in a single 

plane and the rest off the plane 
• no dominant plane present 

 
No a-priori knowledge of the type of the 
scene is required 
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GC-RANSAC [Barath and Matas, CVPR 2018] 

 

 

Run graph-cut, if a so-far-the-best 
solution is found.  



GC-RANSAC [Barath and Matas, CVPR 2018] 



GC-RANSAC 



GC RANSAC - Speed 


