
Apr. 21, 2021Apr. 21, 2021 PMS 2021PMS 2021 © 2021 IBM Corporation© 2021 IBM Corporation

Industrial project and machine scheduling
with Constraint Programming

Philippe Laborie

IBM, IBM Data & A.I.
laborie@fr.ibm.com

2 / 57 PMS 2021 © 2021 IBM Corporation

Constraint Programming (CP)

Exact method to solve combinatorial optimization
problems

Provides a modeling framework much richer than Integer
Linear Programming (ILP) with additional types of:

Decision variables
Constraints (non-linear)

You don’t need to program anything !
Modern CP Solvers implement powerful automatic search

State-of-the-art methods for solving many classical
scheduling problems and their variants:

Job-shop
RCPSP

Many industrial applications

3 / 57 PMS 2021 © 2021 IBM Corporation

Constraint Programming (CP)

Several CP engines are available:
Choco
Gecode
Google OR-Tools
IBM CP Optimizer
...

I will use CP Optimizer as illustration because:
It has a strong focus on scheduling problems
Its main targets are industrial applications
You can use it without knowing anything about CP
I like it ...

4 / 57 PMS 2021 © 2021 IBM Corporation

Some topics we will cover

Model Resolution

Modeling tools

Scheduling
problems

Industrial
scheduling
problems

5 / 57 PMS 2021 © 2021 IBM Corporation

Overview of CP Optimizer

CP Optimizer
Model

 minimize f(X)
 subject to C(X)

C++

OPL

Python

Java

C# On cloud

Local

...

Solve

6 / 57 PMS 2021 © 2021 IBM Corporation

Properties of the automatic search

Search is complete (exact algorithm)

Search is anytime (first solution is produced fast)

Search is parallel (unless stated otherwise)

Search is randomized
Internally, some ties are broken using random numbers
The seed of the random number generator is a parameter of
the search

Search is deterministic
Solving twice the same problem on the same machine (even
when using multiple parallel workers) with the same seed for
the internal random number generator will produce the
same result
Determinism of the search is essential in an industrial context
and for debugging

7 / 57 PMS 2021 © 2021 IBM Corporation

CP Optimizer automatic search

Main principle: cooperation between several approaches

100 101 102 103 104 105 106

Search algorithm

Failure-Directed Search

Large-Neighborhood Search

Most classical benchmarks

Iterative Diving

Problem size
(number of

activities)

Complete search: optimality proofs

Scaling on
large problems

Meta-heuristic search for
improving incumbent solution

8 / 57 PMS 2021 © 2021 IBM Corporation

CP Optimizer automatic search - Under the hood

Artificial Intelligence Operations Research

Constraint
propagation

Learning

Temporal
constraint
networks

2-SAT
networks

No-goods

Linear
relaxations

Problem
specific
scheduling
algorithms

Tree searchRestarts
LNS Randomization

Model presolveHeuristics

CPO

9 / 57 PMS 2021 © 2021 IBM Corporation

Performance evolution

Objective
landscapes

Failure-directed
search

Iterative
diving

10 / 57 PMS 2021 © 2021 IBM Corporation

A parenthesis on constrained optimization problems

Given X, a set of decision variables,
 minimize f(X) subject to C(X)

A decision variable x∈X does not need to be a
numerical variable … it can be anything defined as a set
of possible values (domain) provided a non-ambiguous
semantics is defined for constraints and expressions:

x1, x2, x3 ∈ { }

maximize (nbColors([x1, x2, x3]))
subject to :
 x1 ≠ ∞
 shape(x1)==shape(x2)
 smaller(x1, x2)
 smaller(x2, x3)
 allDifferent([x1, x2, x3])

3 1, , , , , , , , , ,∞

x1 x2 x3

∞

11 / 57 PMS 2021 © 2021 IBM Corporation

Basic concepts of CP Optimizer

Formulating scheduling problem with numerical variables
only (ex: ILP) … is frustrating

v

12 / 57 PMS 2021 © 2021 IBM Corporation

Basic concepts of CP Optimizer

Formulating scheduling problem with numerical variables
only (ex: ILP) … is frustrating

Scheduling is about time …
Intervals of time (activities, etc.)
Functions of time (resource use, resource state, inventory
levels, ...)

v

v(t)

time t

functions

intervals

13 / 57 PMS 2021 © 2021 IBM Corporation

Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in
the formulation :

Integers integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

14 / 57 PMS 2021 © 2021 IBM Corporation

Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in
the formulation :

Integers integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

Interval variables
The value of an interval variable x is an interval of integers
[s,e): s is the start, e is the end, (e-s) is the size

15 / 57 PMS 2021 © 2021 IBM Corporation

Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in
the formulation :

Integers integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

Interval variables
The value of an interval variable x is an interval of integers
[s,e): s is the start, e is the end, (e-s) is the size
An interval variables can be optional meaning that its value
can also be “absent”

16 / 57 PMS 2021 © 2021 IBM Corporation

Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in
the formulation :

Integers integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

Interval variables
The value of an interval variable x is an interval of integers
[s,e): s is the start, e is the end, (e-s) is the size
An interval variables can be optional meaning that its value
can also be “absent”
Example: interval x, optional, size=10
Some possible values for variable x in a solution:
 absent, [0,10), [1,11), [1000,1010), ...

17 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Job-shop scheduling

Job-shop scheduling problem:

x11 x12 x13
M1

M2

M3

x21 x22 x23

x31 x32 x33

x41 x42 x43

18 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Job-shop scheduling

Job-shop scheduling problem:

Python formulation:

 x = { o : interval_var(size=PT[o]) for o in O } # (4)

 model.add(

 [minimize(max(end_of(x[i,L[i]]) for i in N))] + # (1)

 [no_overlap(x[o] for o in O if MC[o]==k) for k in M] + # (2)

 [end_before_start(x[i,j-1], x[i,j]) for (i,j) in O if 0<j] # (3)

)

 sol = model.solve()

19 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Job-shop scheduling

This formulation with automatic search of CP Optimizer
improved 43 bounds on classical instances in 2015

J. van Hoorn. “The Current state of bounds on benchmark
instances of the job-shop scheduling problem.” Journal of
Scheduling, volume 21, pages 127–128 (2018).

20 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: RCPSP

Resource-Constrained Project Scheduling (RCPSP)

xi

xj

Qik

PTi

pulse(xi,Qik)

x1

x3

x2

x6

x5

x4

x7

x8

R1

R2

21 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: RCPSP

Resource-Constrained Project Scheduling (RCPSP)

Python formulation:

 x = [interval_var(size = PT[i]) for i in N] # (4)

 model.add(

 [minimize(max(end_of(x[i]) for i in N))] + # (1)

 [sum(pulse(x[i],q) for (i,q) in R[k]) <= C[k] for k in M] + # (2)

 [end_before_start(x[i], x[j]) for (i,j) in P] # (3)

)

 sol = model.solve()

xi

xj

Qik

PTi

pulse(xi,Qik)

22 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: RCPSP

This formulation with automatic search of CP Optimizer
improved 53 bounds on classical instances of the PSPLib
in 2015

Additional instances were improved in 2019:
 http://www.om-db.wi.tum.de/psplib/getdata_sm.html

23 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Multi-Mode RCPSP

Multi-Mode RCPSP (MMRCPSP)

xi
xj

PTij

yij

yi1 Mode
selection

24 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Multi-Mode RCPSP-DC

Multi-Mode RCPSP with Discounted
Cash Flows

xi
xj

PTij

yij

yi1 Mode
selection

25 / 57 PMS 2021 © 2021 IBM Corporation

Industrial scheduling applications

In the real life, scheduling problems are complex

26 / 57 PMS 2021 © 2021 IBM Corporation

Industrial scheduling applications

Complex objectives:
resource costs,

tardiness, throughput

Complex constraints:
activities, resources

Overconstrained
Ill-defined

Large
(e.g. 1000000 tasks)

Require fast
solving time

In the real life, scheduling problems are complex

Heterogeneous
decisions

27 / 57 PMS 2021 © 2021 IBM Corporation

Few but versatile modeling concepts

Temporal constraints
Optional activities

Over-constrained problems
Alternative resources/modes
Work-breakdown structures

Earliness/tardiness costs

Unary resources
Setup times/costs
Travel times/costs

Cumulative resources
Inventories, Reservoirs

Aggregation of individual
costs (max, weighted sum,

Net Present Value)

Parallel batches
Activity incompatibilities

Resource calendars
Resource efficiency

 Interval variables

 General arithmetical
 expressions

 Cumul functions

 State functions

 Sequence variables

 Constant functions

28 / 57 PMS 2021 © 2021 IBM Corporation

Scaling

First question before starting to think
 of an approach to solve a real (scheduling) problem:

What is the actual size n of the problem ?
Start thinking of an approach/formulation to solve problems
of size 2n or 5n … Not n/10 or n/100 !!!

Example: if n=1.000.000, forget about a formulation
(number of variables or constraints) that would be in O(n2)
or even worse

From the start of the project, work with data of realistic
size (even if simplified, even if synthetic)

Size of CP Optimizer formulations for scheduling
problems usually scale in O(n)

29 / 57 PMS 2021 © 2021 IBM Corporation

Scaling example on RCPSP

New benchmark with RCPSP from 500 to 500.000 tasks
Largest problem: 500.000 tasks, 79 resources,
4.740.783 precedences, 4.433.550 resource requirements

Time to first feasible solution (V12.8 v.s. V12.9)

0E+00 1E+05 2E+05 3E+05 4E+05 5E+05
0

500

1000

1500

2000

2500

3000
First solution time for large RCPSPs (automatic search with 4 workers)

V12.8 V12.9

Instance size (Number of tasks)

Fi
rs

t s
ol

ut
io

n
tim

e
(s

)

30 / 57 PMS 2021 © 2021 IBM Corporation

Safety nets

Starting point solutions (a.k.a. warm start)

Blackbox expressions (NEW)

31 / 57 PMS 2021 © 2021 IBM Corporation

Safety nets: starting point solutions

The search can be specified a starting point solution as
input. Use cases:

Search process has been interrupted; restart from last solution
A problem specific heuristic is available to provide a solution
to start from
Multi-objective lexicographical objective: minimize f1, then
minimize f2 with some constraint on f1, …
When hard to find a feasible solution: start from a relaxed
problem that minimizes constraint violation
Solving very similar successive models, for instance in dynamic
scheduling, in re-scheduling

If the starting point is feasible and complete, the search is
guaranteed to first visit this solution

Otherwise, the information in the starting point is used as a
heuristic guideline for the search

32 / 57 PMS 2021 © 2021 IBM Corporation

Safety nets: blackbox expressions

Black-Box function:
A function f(X): Rn R for which the analytic form is not known→
The user provides a function that can be called to compute
the value f(X) on fixed parameter values X

A black-box function can be evaluated to obtain:
Value : f(4,6,2) 4.435→
Definiteness : f(5,5,2) undefined→

Example of black-box function:
Formulation with predefined expressions would be very costly
Legacy code: no access to what is inside a library/executable
Numerical code involving differential equations, integrals, …
Result of a complex simulation (schedule, policy)
Prediction of a machine learning model

33 / 57 PMS 2021 © 2021 IBM Corporation

Safety nets: blackbox expressions

Since last release blackbox expressions permit to extend the
predefined set of expressions

 double f(double a, double b, double c); // Blackbox function

 ILOBLACKBOX3(BBF, IloNumExpr, u, IloNumExpr, v, IloNumExpr, w) {
 returnValue(f(getValue(u), getValue(v), getValue(w)));
 }

 model.add(…);
 IloNumExpr bbf = BBF(env,x,y,z);
 model.add(IloMinimize(env, bbf));
 model.add(x+y+z <= bbf);

All types of variables/expressions are supported as
arguments (integer, interval, ...), individually or in arrays
Blackbox expressions can be used as any other expression in
the model (no restriction)
Search remains complete

34 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools

Process for building an optimization engine for an
application

Design
optimization

model
Model

Data

Formal
problem
definition

Solution

35 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools

Process for building an optimization engine for an
application

Reality of industrial projects is more complex

Design
optimization

model
Model

Crunched
data

Formal
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal
problem
definition

36 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools

Process for building an optimization engine for an
application

Reality of industrial projects is more complex

Design
optimization

model
Model

Crunched
data

Formal
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal
problem
definition

90% of the effort !

37 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools

Process for building an optimization engine for an
application

Reality of industrial projects is more complex

Design
optimization

model
Model

Crunched
data

Formal
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal
problem
definition

Strongly i(n)tera(c)tive process

90% of the effort !

38 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools

Typical questions/issues arising during model design
How does my current model look like when instantiated on
some data ?
Does it contains some weird things I’m not aware of ?
Why is it infeasible ?

Bug in the model ?
Bug in the data ?

Why is it difficult to find a feasible solution?
Is my model performing better than another variant I tried?

39 / 57 PMS 2021 © 2021 IBM Corporation

Example: satellite communication scheduling

Station 1
Station 2

Station 3

xi

yi,1

yi,2 yi,3

Communication task xi:
Alternative assignments to
ground stations and time windows

yi,4

OR

L. Kramer, L. Barbulescu, S. Smith. “Understanding Performance
Trade-offs in Algorithms for Solving Oversubscribed Scheduling”.
In: Proc. AAAI 2007.

40 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: example

Example of a satellite scheduling problem
 x = { i : interval_var(name=i) for i in T }

 y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]],

 end=[o[2],o[4]], name=str(o)) for o in O }

 model.add(

 [maximize(sum([presence_of(x[i]) for i in T]))] +

 [alternative(x[i], [y[o] for o in O if o[0]==i]) for i in T] +

 [sum([pulse(y[o],1) for o in O if o[1]==s]) <= S[s][2] for s in S]

)

 model.export_model(“satellite.cpo”)

Export/import model instance as a .cpo file

41 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: input/output file format (.cpo)

42 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: example

Example of a satellite scheduling problem
 x = { i : interval_var(name=i) for i in T }

 y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]],

 end=[o[2],o[4]], name=str(o)) for o in O }

 model.add(

 [maximize(sum([presence_of(x[i]) for i in T]))] +

 [alternative(x[i], [y[o] for o in O if o[0]==i]) for i in T] +

 [sum([pulse(y[o],1) for o in O if o[1]==s]) <= S[s][2] for s in S]

)

 model.solve(TimeLimit=20)

43 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: search log

 ! --- CP Optimizer 20.1.0.0 --
 ! Maximization problem - 2980 variables, 851 constraints
 ! Initial process time : 0.02s (0.02s extraction + 0.00s propagation)
 ! . Log search space : 30213.9 (before), 30213.9 (after)
 ! . Memory usage : 9.6 MB (before), 9.6 MB (after)
 ! Using parallel search with 8 workers.
 ! --
 ! Best Branches Non-fixed W Branch decision
 0 2980 -
 + New bound is 838
 ! --
 ! Search completed, model has no solution.
 ! Best bound : 838
 ! --
 ! Number of branches : 0
 ! Number of fails : 0
 ! Total memory usage : 15.3 MB (13.7 MB CP Optimizer + 1.6 MB Concert)
 ! Time spent in solve : 0.02s (0.00s engine + 0.02s extraction)
 ! Search speed (br. / s) : 0
 ! --

44 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: example

Example of a satellite scheduling problem
 x = { i : interval_var(name=i) for i in T }

 y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]],

 end=[o[2],o[4]], name=str(o)) for o in O }

 model.add(

 [maximize(sum([presence_of(x[i]) for i in T]))] +

 [alternative(x[i], [y[o] for o in O if o[0]==i]) for i in T] +

 [sum([pulse(y[o],1) for o in O if o[1]==s]) <= S[s][2] for s in S]

)

 model.refine_conflict().print_conflict()

Conflict refiner extracts the smallest subset of constraints
that explains the infeasibility
P. Laborie. An Optimal Iterative Algorithm for Extracting
MUCs in a Black-box Constraint Network. In: Proc. ECAI-
2014

45 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: conflict refiner

 ! --
 ! Conflict refining - 851 constraints
 ! --
 ! Iteration Number of constraints
 * 1 851
 * 2 426
 ...
 * 47 4
 ! Conflict refining terminated
 ! --
 ! Conflict status : Terminated normally, conflict found
 ! Conflict size : 4 constraints
 ! Number of iterations : 47
 ! Total memory usage : 13.7 MB
 ! Conflict computation time : 0.43s
 ! --

Conflict refiner result:

Member constraints:
 alternative("42", ["('42', 3, 400, 27, 435)"])
 alternative("43", ["('43', 3, 391, 21, 427)"])
 alternative("42A", ["('42A', 3, 389, 34, 424)"])
 sum([pulse("('42', 3, 400, 27, 435)",1) + pulse("('43', 3, 391, 21, 427)",1) +
 pulse("('42A', 3, 389, 34, 424)",1) + ... + pulse("('207A', 3, 223, 21, 313)",1)]) <= 2

“42” = intervalVar();
“43” = intervalVar();
“42A” = intervalVar(); “43”

“42A”

“42”

46 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: model warnings

 [maximize(sum([presence_of(x[i]) for i in T]))] +

/Users/laborie/Satellite/satellite.py:21: Warning: Boolean expression 'presenceOf' is
always true because interval variable '42' is declared present.
 presenceOf("42")
/Users/laborie/Satellite/satellite.py:21: Warning: Boolean expression 'presenceOf' is
always true because interval variable '43' is declared present.
 presenceOf("43")
/Users/laborie/Satellite/satellite.py:21: Warning: Boolean expression 'presenceOf' is
always true because interval variable '42A' is declared present.
 presenceOf("42A")
…

Too many warnings of this type. Suppressing further warnings of this type.

47 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: example

Example of a satellite scheduling problem
 x = { i : interval_var(optional=True, name=i) for i in T }

 y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]],

 end=[o[2],o[4]], name=str(o)) for o in O }

 model.add(

 [maximize(sum([presence_of(x[i]) for i in T]))] +

 [alternative(x[i], [y[o] for o in O if o[0]==i]) for i in T] +

 [sum([pulse(y[o],1) for o in O if o[1]==s]) <= S[s][2] for s in S]

)

 model.solve(TimeLimit=20)

48 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: search log

 ! --- CP Optimizer 20.1.0.0 --
 ! Maximization problem - 2980 variables, 851 constraints
 ! TimeLimit = 20
 ! LogPeriod = 100000
 ! Initial process time : 0.05s (0.04s extraction + 0.01s propagation)
 ! . Log search space : 4627.3 (before), 4627.3 (after)
 ! . Memory usage : 12.1 MB (before), 12.1 MB (after)
 ! Using parallel search with 8 workers.
 ! --
 ! Best Branches Non-fixed W Branch decision
 0 2980 -
 + New bound is 838
 ! Using iterative diving.
 ! Using temporal relaxation.
 * 785 2142 0.27s 7 (gap is 6.75%)
 * 793 9796 0.27s 7 (gap is 5.67%)
 *...
 821 52389 271 5 F -
 + New bound is 837 (gap is 1.95%)
 * 822 44536 8.04s 6 (gap is 1.82%)
 ! Using failure-directed search.
 * 823 60147 8.75s 3 (gap is 1.70%)
 ...

49 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: search log

 ...
 ! Time = 19.37s, Average fail depth = 486, Memory usage = 113.0 MB
 ! Current bound is 837 (gap is 1.33%)
 ! Best Branches Non-fixed W Branch decision
 826 100k 2 4 710 = startOf(('85', 5, 710, 29, 743))
 826 200k 2 2 911 = startOf(('334', 10, 911, 22, 986))
 ! --
 ! Search terminated by limit, 12 solutions found.
 ! Best objective : 826 (gap is 1.33%)
 ! Best bound : 837
 ! --
 ! Number of branches : 4399997
 ! Number of fails : 210551
 ! Total memory usage : 109.2 MB (107.6 MB CP Optimizer + 1.6 MB Concert)
 ! Time spent in solve : 20.01s (19.97s engine + 0.04s extraction)
 ! Search speed (br. / s) : 220330.3
 ! --

50 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: example

Example of a satellite scheduling problem
 x = { i : interval_var(optional=True, name=i) for i in T }

 y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]],

 end=[o[2],o[4]], name=str(o)) for o in O }

 model.add(

 [maximize(sum([presence_of(x[i]) for i in T]))] +

 [alternative(x[i], [y[o] for o in O if o[0]==i]) for i in T] +

 [sum([pulse(y[o],1) for o in O if o[1]==s]) <= S[s][2] for s in S]

)

 model.run_seeds(30, TimeLimit=20)

Run instance n times (here n=30) with different random
seeds (1,2,…,n) and perform some statistical analysis on
the results to asses stability of the search

51 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: solve stability

Benchmarking current problem on 30 runs...
Run Soln Proof Branches Time (s) Objective
--
 1 1 0 4672277 20.01 826
 2 1 0 4197814 20.06 826
 3 1 0 3040173 20.03 826
 4 1 0 3446413 20.01 826
 5 1 0 3640692 20.12 826
 6 1 0 3532742 20.10 825
 7 1 0 3689278 20.01 826
 8 1 0 3427675 20.02 826
 9 1 0 3457423 20.10 824
...
 29 1 0 3522099 20.01 826
 30 1 0 3696967 20.02 825
--
All runs stopped by limit
Mean 1.00 0.00 3578449 20.03 825.833333
Std dev 424327 0.03 0.461133
Geomean 3553656 20.03
Min 2691157 20.01 824
Max 4672277 20.12 826

52 / 57 PMS 2021 © 2021 IBM Corporation

Conclusion

Consider using/comparing to CP when working on
scheduling problems (ILP often is not competitive)

CP Optimizer provides:
A mathematical modeling language for combinatorial
optimization problems that extends ILP (and classical CP)
with some algebra on intervals and functions allowing
compact and maintainable formulations for complex
scheduling problems
A continuously improving automatic search algorithm that
is complete, anytime, efficient (often competitive with
problem-specific algorithms) and scalable

If you are using CPLEX for ILP, then you already have CP
Optimizer in the box !

53 / 57 PMS 2021 © 2021 IBM Corporation

Last-minute slide

The two-stage stochastic programming and recoverable
robustness problem described by Marjan this morning

 x = [[interval_var(size=P[k][i], optional=True, end=[0,D[i]]) for i in N] for k in S]

 model.add(

 [maximize(sum(Q[k]*presence_of(x[k][i]) for i in N for k in S))] +

 [no_overlap(x[k][i] for i in N) for k in S] +

 [presence_of(x[k][i]) <= presence_of(x[0][i]) for i in N for k in range(1,s)]

)

54 / 57 PMS 2021 © 2021 IBM Corporation

Last-minute slide

The two-stage stochastic programming and recoverable
robustness problem described by Marjan this morning

 x = [[interval_var(size=P[k][i], optional=True, end=[0,D[i]]) for i in N] for k in S]

 model.add(

 [maximize(sum(Q[k]*presence_of(x[k][i]) for i in N for k in S))] +

 [no_overlap(x[k][i] for i in N) for k in S] +

 [presence_of(x[k][i]) <= presence_of(x[0][i]) for i in N for k in range(1,s)]

)

Reference scenario

20 tasks x 10 scenarios

55 / 57 PMS 2021 © 2021 IBM Corporation

Last-minute slide

The two-stage stochastic programming and recoverable
robustness problem described by Marjan this morning

 x = [[interval_var(size=P[k][i], optional=True, end=[0,D[i]]) for i in N] for k in S]

 model.add(

 [maximize(sum(Q[k]*presence_of(x[k][i]) for i in N for k in S))] +

 [no_overlap(x[k][i] for i in N) for k in S] +

 [presence_of(x[k][i]) <= presence_of(x[0][i]) for i in N for k in range(1,s)]

)

Reference scenario

10.000 tasks x 10 scenarios, solution after 5mn

56 / 57 PMS 2021 © 2021 IBM Corporation

Some pointers

Recent review of CP Optimizer (modeling concepts,
applications, examples, tools, performance,…) :
IBM ILOG CP Optimizer for scheduling. Constraints journal
(2018) vol. 23, p210–250. http://ibm.biz/Constraints2018

CP Optimizer forum: http://ibm.biz/COS_Forums (same as
CPLEX)

http://ibm.biz/Constraints2018
http://ibm.biz/http://ibm.biz/COS_Forums

57 / 57 PMS 2021 © 2021 IBM Corporation

Some references

P. Laborie, J. Rogerie. Reasoning with Conditional Time-
Intervals. In: Proc. FLAIRS-2008, p555-560.
P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with
Conditional Time-Intervals. Part II: An Algebraical Model for
Resources. In: Proc. FLAIRS-2009, p201-206.

P. Laborie, D. Godard. Self-Adapting Large Neighborhood
Search: Application to Single-Mode Scheduling Problems. In:
Proc. MISTA-2007.
P. Laborie, J. Rogerie. Temporal Linear Relaxation in IBM ILOG
CP Optimizer. Journal of Scheduling 19(4), 391–400 (2016).
P. Vilím. Timetable Edge Finding Filtering Algorithm for Discrete
Cumulative Resources . In: Proc. CPAIOR-2011.
P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for
Constraint-based Scheduling. In: Proc. CPAIOR-2015.

P. Laborie, J. Rogerie, P. Shaw, P. Vilím. IBM ILOG CP Optimizer
for Scheduling. Constraints Journal (2018).

M
od

el
in

g
co

nc
ep

ts

Se
ar

ch
al

go
rit

hm

O
ve

rv
ie

w

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

