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Constraint Programming (CP)

Exact method to solve combinatorial optimization 
problems

Provides a modeling framework much richer than Integer 
Linear Programming (ILP) with additional types of:

Decision variables
Constraints (non-linear)

You don’t need to program anything !
Modern CP Solvers implement powerful automatic search

State-of-the-art methods for solving many classical 
scheduling problems and their variants:

Job-shop
RCPSP

Many industrial applications
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Constraint Programming (CP)

Several CP engines are available:
Choco
Gecode
Google OR-Tools
IBM CP Optimizer
...

I will use CP Optimizer as illustration because:
It has a strong focus on scheduling problems
Its main targets are industrial applications
You can use it without knowing anything about CP 
I like it ...
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Some topics we will cover

Model Resolution

Modeling tools

Scheduling 
problems

Industrial 
scheduling 
problems
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Overview of CP Optimizer

CP Optimizer 
Model

 minimize f(X)
 subject to C(X)

C++

OPL

Python

Java

C# On cloud

Local

...

Solve
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Properties of the automatic search

Search is complete (exact algorithm)

Search is anytime (first solution is produced fast)

Search is parallel (unless stated otherwise)

Search is randomized
Internally, some ties are broken using random numbers
The seed of the random number generator is a parameter of 
the search

Search is deterministic
Solving twice the same problem on the same machine (even 
when using multiple parallel workers) with the same seed for 
the internal random number generator will produce the 
same result
Determinism of the search is essential in an industrial context 
and for debugging
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CP Optimizer automatic search

Main principle: cooperation between several approaches

100 101 102 103 104 105 106

Search algorithm

Failure-Directed Search

Large-Neighborhood Search

Most classical benchmarks

Iterative Diving

Problem size
(number of 

activities)

Complete search: optimality proofs

Scaling on 
large problems

Meta-heuristic search for 
improving incumbent solution
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CP Optimizer automatic search - Under the hood

Artificial Intelligence Operations Research

Constraint 
propagation

Learning

Temporal
constraint
networks

2-SAT
networks

No-goods

Linear 
relaxations

Problem 
specific
scheduling
algorithms

Tree searchRestarts
LNS Randomization

Model presolveHeuristics

CPO
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Performance evolution

Objective
landscapes

Failure-directed
search

Iterative 
diving 
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A parenthesis on constrained optimization problems

Given X, a set of decision variables,
   minimize f(X) subject to C(X)

A decision variable x∈X does not need to be a 
numerical variable … it can be anything defined as a set 
of possible values (domain) provided a non-ambiguous 
semantics is defined for constraints and expressions:

x1, x2, x3 ∈ {                                  }

maximize ( nbColors([x1, x2, x3]) )
subject to :
  x1 ≠ ∞
  shape(x1)==shape(x2)
  smaller(x1, x2)
  smaller(x2, x3)
  allDifferent([x1, x2, x3])

3 1, , , , , , , , , ,∞

x1  x2  x3

∞
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Basic concepts of CP Optimizer

Formulating scheduling problem with numerical variables 
only (ex: ILP) … is frustrating

v
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Basic concepts of CP Optimizer

Formulating scheduling problem with numerical variables 
only (ex: ILP) … is frustrating 

Scheduling is about time …
Intervals of time (activities, etc.)
Functions of time (resource use, resource state, inventory 
levels, ...) 

v

v(t)

time t

functions

intervals
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Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in 
the formulation :

Integers             integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions
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Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in 
the formulation :

Integers             integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

Interval variables
The value of an interval variable x is an interval of integers 
[s,e): s is the start, e is the end, (e-s) is the size
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Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in 
the formulation :

Integers             integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

Interval variables
The value of an interval variable x is an interval of integers 
[s,e): s is the start, e is the end, (e-s) is the size
An interval variables can be optional meaning that its value 
can also be “absent”
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Basic concepts of CP Optimizer

Introduction of a some simple mathematical concepts in 
the formulation :

Integers             integer variables
Intervals interval variables
Sequences of intervals sequence variables
Functions state/cumul functions

Interval variables
The value of an interval variable x is an interval of integers 
[s,e): s is the start, e is the end, (e-s) is the size
An interval variables can be optional meaning that its value 
can also be “absent”
Example:  interval x, optional, size=10
Some possible values for variable x in a solution: 
 absent,  [0,10),  [1,11),  [1000,1010), ...
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Academic problems: Job-shop scheduling

Job-shop scheduling problem:

 

x11 x12 x13
M1

M2

M3

x21 x22 x23

x31 x32 x33

x41 x42 x43
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Academic problems: Job-shop scheduling

Job-shop scheduling problem:

Python formulation:
 

 x = { o : interval_var(size=PT[o])              for o in O }                 # (4)

  model.add(

   [ minimize( max( end_of(x[i,L[i]]) for i in N ) )                     ] +   # (1)

   [ no_overlap( x[o] for o in O if MC[o]==k )    for k in M             ] +   # (2)

   [ end_before_start( x[i,j-1], x[i,j] )         for (i,j) in O if 0<j  ]     # (3)

  )

  sol = model.solve()
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Academic problems: Job-shop scheduling

This formulation with automatic search of CP Optimizer 
improved 43 bounds on classical instances in 2015 

J. van Hoorn. “The Current state of bounds on benchmark 
instances of the job-shop scheduling problem.” Journal of 
Scheduling, volume 21, pages 127–128 (2018).
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Academic problems: RCPSP

Resource-Constrained Project Scheduling (RCPSP)

 

xi

xj

Qik

PTi

pulse(xi,Qik)

x1

x3

x2

x6

x5

x4

x7

x8

R1

R2
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Academic problems: RCPSP

Resource-Constrained Project Scheduling (RCPSP)

Python formulation:
 

 x = [ interval_var(size = PT[i])                   for i in N      ]        # (4)

  model.add(

   [ minimize( max( end_of(x[i]) for i in N ) )                      ] +      # (1)

   [ sum( pulse(x[i],q) for (i,q) in R[k] ) <= C[k]  for k in M      ] +      # (2)

   [ end_before_start( x[i], x[j] )                  for (i,j) in P  ]        # (3)

  )

  sol = model.solve()

xi

xj

Qik

PTi

pulse(xi,Qik)
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Academic problems: RCPSP

This formulation with automatic search of CP Optimizer 
improved 53 bounds on classical instances of the PSPLib 
in 2015 

Additional instances were improved in 2019: 
  http://www.om-db.wi.tum.de/psplib/getdata_sm.html



23 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Multi-Mode RCPSP

Multi-Mode RCPSP  (MMRCPSP)

 

 

xi
xj

PTij

yij

yi1 Mode
selection



24 / 57 PMS 2021 © 2021 IBM Corporation

Academic problems: Multi-Mode RCPSP-DC

Multi-Mode RCPSP with Discounted 
Cash Flows

 

 

xi
xj

PTij

yij

yi1 Mode
selection
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Industrial scheduling applications

In the real life, scheduling problems are complex
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Industrial scheduling applications

Complex objectives: 
resource costs, 

tardiness, throughput

Complex constraints:
activities, resources

Overconstrained
Ill-defined

Large 
(e.g. 1000000 tasks)

Require fast
solving time

In the real life, scheduling problems are complex

Heterogeneous
decisions
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Few but versatile modeling concepts

Temporal constraints
Optional activities

Over-constrained problems
Alternative resources/modes
Work-breakdown structures

Earliness/tardiness costs

Unary resources 
Setup times/costs 
Travel times/costs

Cumulative resources
Inventories, Reservoirs

Aggregation of individual
costs (max, weighted sum,

Net Present Value)

Parallel batches
Activity incompatibilities

Resource calendars 
Resource efficiency

 Interval variables

 General arithmetical
 expressions

 Cumul functions

 State functions

 Sequence variables

 Constant functions



28 / 57 PMS 2021 © 2021 IBM Corporation

Scaling

First question before starting to think 
   of an approach to solve a real (scheduling) problem:

What is the actual size n of the problem ? 
Start thinking of an approach/formulation to solve problems 
of size 2n or 5n … Not n/10 or n/100 !!!

Example: if n=1.000.000, forget about a formulation 
(number of variables or constraints) that would be in O(n2) 
or even worse

From the start of the project, work with data of realistic 
size (even if simplified, even if synthetic)

Size of CP Optimizer formulations for scheduling 
problems usually scale in O(n)   
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Scaling example on RCPSP

New benchmark with RCPSP from 500 to 500.000 tasks
Largest problem: 500.000 tasks, 79 resources,          
4.740.783 precedences, 4.433.550 resource requirements 

Time to first feasible solution (V12.8 v.s. V12.9)
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Safety nets

Starting point solutions (a.k.a. warm start)

Blackbox expressions (NEW)
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Safety nets: starting point solutions

The search can be specified a starting point solution as 
input. Use cases:

Search process has been interrupted; restart from last solution
A problem specific heuristic is available to provide a solution 
to start from
Multi-objective lexicographical objective: minimize f1, then 
minimize f2 with some constraint on f1, …
When hard to find a feasible solution: start from a relaxed 
problem that minimizes constraint violation
Solving very similar successive models, for instance in dynamic 
scheduling, in re-scheduling

If the starting point is feasible and complete, the search is 
guaranteed to first visit this solution

Otherwise, the information in the starting point is used as a 
heuristic guideline for the search  
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Safety nets: blackbox expressions

Black-Box function:
A function f(X): Rn  R for which the analytic form is not known→
The user provides a function that can be  called to compute 
the value f(X) on fixed parameter values X

A black-box function can be evaluated to obtain:
Value : f(4,6,2)  4.435→
Definiteness : f(5,5,2)  undefined→

Example of black-box function:
Formulation with predefined expressions would be very costly
Legacy code: no access to what is inside a library/executable
Numerical code involving differential equations, integrals, …
Result of a complex simulation (schedule, policy)
Prediction of a machine learning model
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Safety nets: blackbox expressions

Since last release blackbox expressions permit to extend the 
predefined set of expressions

       double f(double a, double b, double c); // Blackbox function

       ILOBLACKBOX3(BBF, IloNumExpr, u, IloNumExpr, v, IloNumExpr, w) {
         returnValue( f(getValue(u), getValue(v), getValue(w)) );
       }
       
       model.add( … );
       IloNumExpr bbf = BBF(env,x,y,z);
       model.add( IloMinimize(env, bbf) );
       model.add( x+y+z <= bbf );

 
All types of variables/expressions are supported as 
arguments (integer, interval, ...), individually or in arrays
Blackbox expressions can be used as any other expression in 
the model (no restriction)
Search remains complete
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Modeling tools

Process for building an optimization engine for an 
application

Design 
optimization

model
Model

Data

Formal 
problem
definition

Solution
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Modeling tools

Process for building an optimization engine for an 
application

Reality of industrial projects is more complex

Design 
optimization

model
Model

Crunched
data

Formal 
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal 
problem
definition
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Modeling tools

Process for building an optimization engine for an 
application

Reality of industrial projects is more complex

Design 
optimization

model
Model

Crunched
data

Formal 
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal 
problem
definition

90% of the effort !
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Modeling tools

Process for building an optimization engine for an 
application

Reality of industrial projects is more complex

Design 
optimization

model
Model

Crunched
data

Formal 
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal 
problem
definition

Strongly i(n)tera(c)tive process

90% of the effort !
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Modeling tools

Typical questions/issues arising during model design
How does my current model look like when instantiated on 
some data ?
Does it contains some weird things I’m not aware of ?
Why is it infeasible ? 

Bug in the model ?
Bug in the data ?

Why is it difficult to find a feasible solution?
Is my model performing better than another variant I tried?
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Example: satellite communication scheduling

Station 1
Station 2

Station 3

xi

yi,1

yi,2 yi,3

Communication task xi:
Alternative assignments to 
ground stations and time windows

yi,4

OR

L. Kramer, L. Barbulescu, S. Smith. “Understanding Performance 
Trade-offs in Algorithms for Solving Oversubscribed Scheduling”. 
In: Proc. AAAI 2007.
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Modeling tools: example

Example of a satellite scheduling problem
         x = { i : interval_var(name=i)  for i in T }

         y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]], 

                                end=[o[2],o[4]], name=str(o))         for o in O }

         model.add(

          [ maximize( sum( [ presence_of(x[i])   for i in T ]))                  ] +

          [ alternative(x[i], [ y[o] for o in O if o[0]==i ] )        for i in T ] +

          [ sum( [ pulse(y[o],1) for o in O if o[1]==s ]) <= S[s][2]  for s in S ]

         )

         model.export_model(“satellite.cpo”)

Export/import model instance as a .cpo file 
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Modeling tools: input/output file format (.cpo)
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Modeling tools: example

Example of a satellite scheduling problem
         x = { i : interval_var(name=i)  for i in T }

         y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]], 

                                end=[o[2],o[4]], name=str(o))         for o in O }

         model.add(

          [ maximize( sum( [ presence_of(x[i])   for i in T ]))                  ] +

          [ alternative(x[i], [ y[o] for o in O if o[0]==i ] )        for i in T ] +

          [ sum( [ pulse(y[o],1) for o in O if o[1]==s ]) <= S[s][2]  for s in S ]

         )

         model.solve(TimeLimit=20)



43 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: search log

 ! --------------------------------------------------- CP Optimizer 20.1.0.0 --
 ! Maximization problem - 2980 variables, 851 constraints
 ! Initial process time : 0.02s (0.02s extraction + 0.00s propagation)
 !  . Log search space  : 30213.9 (before), 30213.9 (after)
 !  . Memory usage      : 9.6 MB (before), 9.6 MB (after)
 ! Using parallel search with 8 workers.
 ! ----------------------------------------------------------------------------
 !          Best Branches  Non-fixed    W       Branch decision
                        0       2980                 -
 + New bound is 838
 ! ----------------------------------------------------------------------------
 ! Search completed, model has no solution.
 ! Best bound             : 838
 ! ----------------------------------------------------------------------------
 ! Number of branches     : 0
 ! Number of fails        : 0
 ! Total memory usage     : 15.3 MB (13.7 MB CP Optimizer + 1.6 MB Concert)
 ! Time spent in solve    : 0.02s (0.00s engine + 0.02s extraction)
 ! Search speed (br. / s) : 0
 ! ----------------------------------------------------------------------------
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Modeling tools: example

Example of a satellite scheduling problem
         x = { i : interval_var(name=i)  for i in T }

         y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]], 

                                end=[o[2],o[4]], name=str(o))         for o in O }

         model.add(

          [ maximize( sum( [ presence_of(x[i])   for i in T ]))                  ] +

          [ alternative(x[i], [ y[o] for o in O if o[0]==i ] )        for i in T ] +

          [ sum( [ pulse(y[o],1) for o in O if o[1]==s ]) <= S[s][2]  for s in S ]

         )

         model.refine_conflict().print_conflict()

Conflict refiner extracts the smallest subset of constraints 
that explains the infeasibility
P. Laborie. An Optimal Iterative Algorithm for Extracting 
MUCs in a Black-box Constraint Network. In: Proc. ECAI-
2014
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Modeling tools: conflict refiner

 ! ----------------------------------------------------------------------------
 ! Conflict refining - 851 constraints
 ! ----------------------------------------------------------------------------
 !   Iteration      Number of constraints
 *           1                        851
 *           2                        426
 ...
 *          47                          4
 ! Conflict refining terminated
 ! ----------------------------------------------------------------------------
 ! Conflict status           : Terminated normally, conflict found
 ! Conflict size             : 4 constraints
 ! Number of iterations      : 47
 ! Total memory usage        : 13.7 MB
 ! Conflict computation time : 0.43s
 ! ----------------------------------------------------------------------------

Conflict refiner result:

Member constraints:
   alternative("42",  ["('42',  3, 400, 27, 435)"])
   alternative("43",  ["('43',  3, 391, 21, 427)"])
   alternative("42A", ["('42A', 3, 389, 34, 424)"])
   sum([pulse("('42', 3, 400, 27, 435)",1)  + pulse("('43', 3, 391, 21, 427)",1) + 
        pulse("('42A', 3, 389, 34, 424)",1) + ... + pulse("('207A', 3, 223, 21, 313)",1)]) <= 2

“42”  = intervalVar(); 
“43”  = intervalVar();
“42A” = intervalVar(); “43”

“42A”

“42”
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Modeling tools: model warnings

          [ maximize( sum( [ presence_of(x[i])   for i in T ]))                  ] +

/Users/laborie/Satellite/satellite.py:21: Warning: Boolean expression 'presenceOf' is 
always true because interval variable '42' is declared present.
                                          presenceOf("42")
/Users/laborie/Satellite/satellite.py:21: Warning: Boolean expression 'presenceOf' is 
always true because interval variable '43' is declared present.
                                          presenceOf("43")
/Users/laborie/Satellite/satellite.py:21: Warning: Boolean expression 'presenceOf' is 
always true because interval variable '42A' is declared present.
                                          presenceOf("42A")
…
   
Too many warnings of this type. Suppressing further warnings of this type.



47 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: example

Example of a satellite scheduling problem
         x = { i : interval_var(optional=True, name=i)  for i in T }

         y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]], 

                                end=[o[2],o[4]], name=str(o))         for o in O }

         model.add(

          [ maximize( sum( [ presence_of(x[i])   for i in T ]))                  ] +

          [ alternative(x[i], [ y[o] for o in O if o[0]==i ] )        for i in T ] +

          [ sum( [ pulse(y[o],1) for o in O if o[1]==s ]) <= S[s][2]  for s in S ]

         )

         model.solve(TimeLimit=20)



48 / 57 PMS 2021 © 2021 IBM Corporation

Modeling tools: search log

 ! --------------------------------------------------- CP Optimizer 20.1.0.0 --
 ! Maximization problem - 2980 variables, 851 constraints
 ! TimeLimit            = 20
 ! LogPeriod            = 100000
 ! Initial process time : 0.05s (0.04s extraction + 0.01s propagation)
 !  . Log search space  : 4627.3 (before), 4627.3 (after)
 !  . Memory usage      : 12.1 MB (before), 12.1 MB (after)
 ! Using parallel search with 8 workers.
 ! ----------------------------------------------------------------------------
 !          Best Branches  Non-fixed    W       Branch decision
                        0       2980                 -
 + New bound is 838
 ! Using iterative diving.
 ! Using temporal relaxation.
 *           785     2142  0.27s        7      (gap is 6.75%)
 *           793     9796  0.27s        7      (gap is 5.67%)
 *...
             821    52389        271    5   F        -
 + New bound is 837 (gap is 1.95%)
 *           822    44536  8.04s        6      (gap is 1.82%)
 ! Using failure-directed search.
 *           823    60147  8.75s        3      (gap is 1.70%)
 ...
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Modeling tools: search log

 ...
 ! Time = 19.37s, Average fail depth = 486, Memory usage = 113.0 MB
 ! Current bound is 837 (gap is 1.33%)
 !          Best Branches  Non-fixed    W       Branch decision
             826     100k          2    4       710  = startOf(('85', 5, 710, 29, 743))
             826     200k          2    2       911  = startOf(('334', 10, 911, 22, 986))
 ! ----------------------------------------------------------------------------
 ! Search terminated by limit, 12 solutions found.
 ! Best objective         : 826 (gap is 1.33%)
 ! Best bound             : 837
 ! ----------------------------------------------------------------------------
 ! Number of branches     : 4399997
 ! Number of fails        : 210551
 ! Total memory usage     : 109.2 MB (107.6 MB CP Optimizer + 1.6 MB Concert)
 ! Time spent in solve    : 20.01s (19.97s engine + 0.04s extraction)
 ! Search speed (br. / s) : 220330.3
 ! ----------------------------------------------------------------------------
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Modeling tools: example

Example of a satellite scheduling problem
         x = { i : interval_var(optional=True, name=i)  for i in T }

         y = { o : interval_var(optional=True, size=o[3], start=[o[2],o[4]], 

                                end=[o[2],o[4]], name=str(o))         for o in O }

         model.add(

          [ maximize( sum( [ presence_of(x[i])   for i in T ]))                  ] +

          [ alternative(x[i], [ y[o] for o in O if o[0]==i ] )        for i in T ] +

          [ sum( [ pulse(y[o],1) for o in O if o[1]==s ]) <= S[s][2]  for s in S ]

         )

         model.run_seeds(30, TimeLimit=20)

Run instance n times (here n=30) with different random 
seeds (1,2,…,n) and perform some statistical analysis on 
the results to asses stability of the search
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Modeling tools: solve stability

Benchmarking current problem on 30 runs...
Run       Soln      Proof      Branches     Time (s)       Objective
--------------------------------------------------------------------
  1          1          0       4672277        20.01             826
  2          1          0       4197814        20.06             826
  3          1          0       3040173        20.03             826
  4          1          0       3446413        20.01             826
  5          1          0       3640692        20.12             826
  6          1          0       3532742        20.10             825
  7          1          0       3689278        20.01             826
  8          1          0       3427675        20.02             826
  9          1          0       3457423        20.10             824
...
 29          1          0       3522099        20.01             826
 30          1          0       3696967        20.02             825
--------------------------------------------------------------------
All runs stopped by limit
Mean      1.00       0.00       3578449        20.03      825.833333
Std dev                          424327         0.03        0.461133
Geomean                         3553656        20.03
Min                             2691157        20.01             824
Max                             4672277        20.12             826
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Conclusion

Consider using/comparing to CP when working on 
scheduling problems (ILP often is not competitive)

CP Optimizer provides:
A mathematical modeling language for combinatorial 
optimization problems that extends ILP (and classical CP) 
with some algebra on intervals and functions allowing 
compact and maintainable formulations for complex 
scheduling problems
A continuously improving automatic search algorithm that 
is complete, anytime, efficient (often competitive with 
problem-specific algorithms) and scalable

If you are using CPLEX for ILP, then you already have CP 
Optimizer in the box !
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Last-minute slide

The two-stage stochastic programming and recoverable 
robustness problem described by Marjan this morning

     x = [ [interval_var(size=P[k][i], optional=True, end=[0,D[i]]) for i in N] for k in S ]

     model.add(

      [ maximize(sum(Q[k]*presence_of(x[k][i]) for i in N for k in S ))              ] +

      [ no_overlap(x[k][i] for i in N)                for k in S                     ] +

      [ presence_of(x[k][i]) <= presence_of(x[0][i])  for i in N for k in range(1,s) ]

     )
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Last-minute slide

The two-stage stochastic programming and recoverable 
robustness problem described by Marjan this morning

     x = [ [interval_var(size=P[k][i], optional=True, end=[0,D[i]]) for i in N] for k in S ]

     model.add(

      [ maximize(sum(Q[k]*presence_of(x[k][i]) for i in N for k in S ))              ] +

      [ no_overlap(x[k][i] for i in N)                for k in S                     ] +

      [ presence_of(x[k][i]) <= presence_of(x[0][i])  for i in N for k in range(1,s) ]

     )

Reference scenario

20 tasks x 10 scenarios
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Last-minute slide

The two-stage stochastic programming and recoverable 
robustness problem described by Marjan this morning

     x = [ [interval_var(size=P[k][i], optional=True, end=[0,D[i]]) for i in N] for k in S ]

     model.add(

      [ maximize(sum(Q[k]*presence_of(x[k][i]) for i in N for k in S ))              ] +

      [ no_overlap(x[k][i] for i in N)                for k in S                     ] +

      [ presence_of(x[k][i]) <= presence_of(x[0][i])  for i in N for k in range(1,s) ]

     )

Reference scenario

10.000 tasks x 10 scenarios, solution after 5mn
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Some pointers

Recent review of CP Optimizer (modeling concepts, 
applications, examples, tools, performance,…) :
IBM ILOG CP Optimizer for scheduling. Constraints journal 
(2018) vol. 23, p210–250. http://ibm.biz/Constraints2018

CP Optimizer forum:  http://ibm.biz/COS_Forums (same as 
CPLEX)

http://ibm.biz/Constraints2018
http://ibm.biz/http://ibm.biz/COS_Forums
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Some references

P. Laborie, J. Rogerie. Reasoning with Conditional Time-
Intervals. In: Proc. FLAIRS-2008, p555-560.
P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with 
Conditional Time-Intervals. Part II: An Algebraical Model for 
Resources. In: Proc. FLAIRS-2009, p201-206. 

P. Laborie, D. Godard. Self-Adapting Large Neighborhood 
Search: Application to Single-Mode Scheduling Problems. In: 
Proc. MISTA-2007.
P. Laborie, J. Rogerie. Temporal Linear Relaxation in IBM ILOG 
CP Optimizer. Journal of Scheduling 19(4), 391–400 (2016).
P. Vilím. Timetable Edge Finding Filtering Algorithm for Discrete 
Cumulative Resources . In: Proc. CPAIOR-2011.
P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for 
Constraint-based Scheduling. In: Proc. CPAIOR-2015.

P. Laborie, J. Rogerie, P. Shaw, P. Vilím. IBM ILOG CP Optimizer 
for Scheduling. Constraints Journal (2018).
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