
Grasping
GraspIt! GPD and PointNetGPD

Lukas Rustler

B3M33HROB212 1

B3M33HROB212

What we have in our group

2

Barrett Hand OnRobot RG6 qb SoftHand Robotiq 2F-80

B3M33HROB212

GraspIt! - Overview

● http://graspit-simulator.github.io
○ Miller, A. T., & Allen, P. K. (2004). Graspit: A

versatile simulator for robotic grasping. IEEE
Robotics and Automation Magazine.

● Used for long time
○ For example as generator of labeled grasps

● Supports different hands or robots
○ Users can define their own

● Support obstacles
○ Importable as meshes

● Support materials
○ Different coefficients of friction

● Dynamic simulation can be enabled
○ Bullet

3

http://graspit-simulator.github.io
https://ieeexplore.ieee.org/document/1371616/
https://ieeexplore.ieee.org/document/1371616/
https://ieeexplore.ieee.org/document/1371616/

B3M33HROB212

GraspIt! - How it works
● Contact between object and gripper is detected (a)

○ Using collision detection based on trees of bounding boxes
● Joint angle which caused the collision is found and the movement is reverted

before collision (b)
● Geometry of the contact is found and friction cones are created (c)

4

B3M33HROB212

GraspIt! - Friction cones

● Coulomb friction model
○ Force applicable at the contact is in the friction cone

● Friction cone (a)
○ Apex in the contact point
○ Axis along the normal force
○ Half angle

■ is the friction coefficient
● During grasp analysis, the cone is

approximated with an m side pyramid (b)
○ f is convex combination of m vectors

5

B3M33HROB212

GraspIt! - Grasp Wrech Space

● Wrenches
○ one of m forces from the cone at contact point i
○ vector from the torque origin
○ force to torque multiplicator

● GWS - space of wrenches applicable to the object given limit on normal force
○ Computed as convex hull of wrenches

●
○ Used in GraspIt!

●
○ Minkowski sum

● For 3D object the GWS is 6D -> three coordinates need to be fixed for
visualization

6

B3M33HROB212

GraspIt! - Metrics

● Task wrench space
○ Space of wrenches which needs to be applied to carry out the given task

■ 6D ball when we assume that disturbances can come from any direction
● 1) Epsilon-quality

○ Radius of the biggest 6D ball in the torque origin which can fit into unit GWS
○ The closer to 1, the better quality

● 2) Volume of
○ The bigger, the better

7

B3M33HROB212

GraspIt! - Simulated Annealing
● Used to find global extrema
● Randomly computes a neighbor of current states and probabilistically decides

if to change state or not
● Use parameter “Temperature T”

○ Decreases in time
○ If T = 0, it is basic hill climbing algorithm

● Used in GraspIt! to sample possible grasps

8

B3M33HROB212

GraspIt! - Eigengrasps

● Ciocarlie et al. ,2007. Dimensionality reduction for hand-independent dexterous robotic grasping.
IEEE International Conference on Intelligent Robots and Systems.

● Reduction of DOF of hands
○ Based on results from robotics and neuroscience

■ Majority of grasps lacks individual finger movements
● For example, human hand needs only 2 eigengrasps

9

https://ieeexplore.ieee.org/abstract/document/4399227
https://ieeexplore.ieee.org/abstract/document/4399227

B3M33HROB212

GraspIt! - Interface

● ROS interface https://github.com/graspit-simulator/graspit_interface
○ Publishes topics and services based on GraspIt! API

● Python client https://github.com/graspit-simulator/graspit_commander
○ Access the services with Python
○ Minimal knowledge of ROS needed

■ Only datatypes - Point, Quaternion, etc.

10

https://github.com/graspit-simulator/graspit_interface
https://github.com/graspit-simulator/graspit_commander

B3M33HROB212

GPD - Overview

● https://github.com/atenpas/gpd
○ ten Pas et al., 2017. Grasp Pose

Detection in Point Clouds.
International Journal of Robotics
Research.

● Based on point clouds
○ even one-view

● Machine learning
● No physical properties needed

○ Materials, etc.
● Faster than GraspIt!
● Work in cluttered environment
● Assumes only two-finger grippers

11

https://github.com/atenpas/gpd
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
http://www.youtube.com/watch?v=kfe5bNt35ZI

B3M33HROB212

GPD - Point Clouds

● Point clouds from RGB-D cameras
○ One view is sufficient
○ Basic pre-processing is needed

■ Denoising, downsampling, outliers removal
● Only information in Region of Interest (ROI) is considered

○ Segmented object,
○ or only given region in point cloud, e.g., workspace

12

B3M33HROB212

GPD - Grasps sampling
● Candidates sampled uniformly randomly over the point

cloud
● Two conditions:

○ The body of the hand is not in collision with the point cloud
○ The closing region of the hand contains at least one point from the

point cloud
● For each candidate, reference frame F of the hand is

computed
● Grid search in grid is performed. Y and Z

contains values along y and z axis of F
○ Corresponding rotation and translation for each grid point are

applied to the hand
● Rotated hand is pushed along negative x axis until

contact with point cloud occurs
○ Last point before contact is added to set of possible grasp if any

point from the point cloud is in the closing region of the hand

13

B3M33HROB212

GPD - Grasp Classification

● Four-layer CNN
○ Binary classification - grasp/no grasp

● Trained from 300 thousand (sampled from
1.5 million) labeled grasp for 55 objects

● Points in closing region (b) are voxelized
(MxMxM voxels)

● Input to CNN are heightmaps (c, d) of voxels
projected to planes orthogonal to axes of the
hand (b) and surface normals (e)

14

B3M33HROB212

GPD - Usage

● Each model contains config file
○ We will use model trained with Eigen
○ User can set ROI, grid, set visualizations

● Individual functions can be called
directly

○ Written in C++
○ Our case

● Or ROS Interface can be used

15

https://github.com/atenpas/gpd_ros/

B3M33HROB212

Others - PointNetGPD

● https://github.com/lianghongzhuo/PointNetGPD
○ Liang et al., 2018. PointNetGPD: Detecting Grasp

Configurations from Point Sets, IEEE International
Conference on Robotics and Automation.

● The same grasp sampling as GPD
● Less parameters in CNN than GPD -> less

prone to overfitting
● No hand-crafted features needed for training
● Works with more sparse point clouds
● Provides dataset with 350k real point clouds
● Grasp with probability, not only binary

16

https://github.com/lianghongzhuo/PointNetGPD
https://arxiv.org/abs/1809.06267
https://arxiv.org/abs/1809.06267
https://arxiv.org/abs/1809.06267
http://www.youtube.com/watch?v=RBFFCLiWhRw

B3M33HROB212

Others - Dex-Net

● https://github.com/BerkeleyAutomation/dex-net
○ Mahler et al., 2017. Dex-Net 2.0: Deep learning to plan

Robust grasps with synthetic point clouds and analytic
grasp metrics. Robotics: Science and Systems.

● Provides 3D datasets with evaluated grasps
○ 10 000 3D objects

● Provides Python package for manipulation with
objects, grasps, etc.

○ Usable for testing new algorithms
● Trained Grasp-Quality CNN

○ Trained on 6.7 million point clouds

17

https://github.com/BerkeleyAutomation/dex-net
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
https://arxiv.org/abs/1703.09312
http://www.youtube.com/watch?v=i6K3GI2_EgU

