Grasping GraspIt! GPD and PointNetGPD

Lukas Rustler

What we have in our group

Barrett Hand

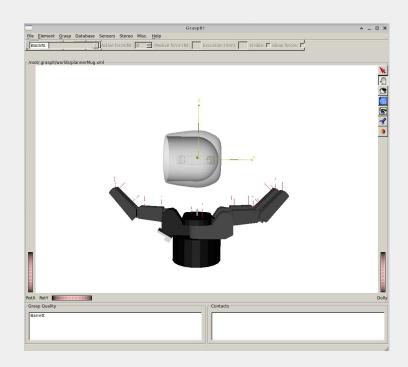
OnRobot RG6

qb SoftHand

Robotiq 2F-80

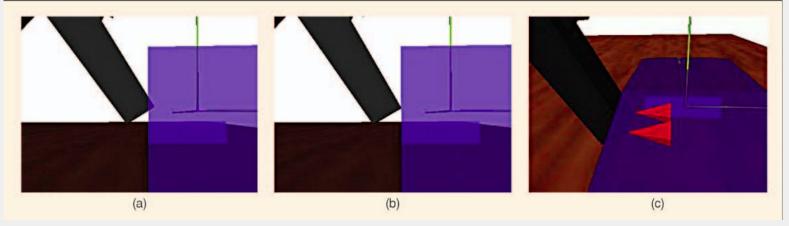
GraspIt! - Overview

- http://graspit-simulator.github.io
 - Miller, A. T., & Allen, P. K. (2004). Graspit: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine.
- Used for long time
 - For example as generator of labeled grasps
- Supports different hands or robots
 - Users can define their own
- Support obstacles
 - Importable as meshes
- Support materials
 - Different coefficients of friction
- Dynamic simulation can be enabled
 - o Bullet



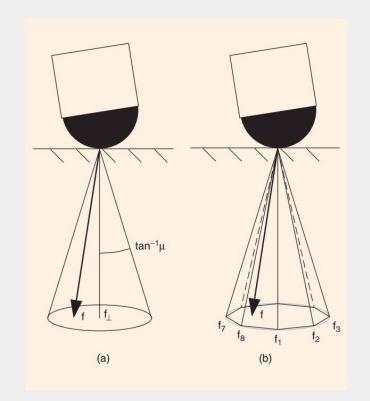
GraspIt! - How it works

- Contact between object and gripper is detected (a)
 - Using collision detection based on trees of bounding boxes
- Joint angle which caused the collision is found and the movement is reverted before collision (b)
- Geometry of the contact is found and friction cones are created (c)



GraspIt! - Friction cones

- Coulomb friction model
 - Force applicable at the contact is in the friction cone
- Friction cone (a)
 - Apex in the contact point
 - \circ $\,\,\,$ Axis along the normal force f_{\perp}
 - \circ Half angle $tan^{-1}\mu$
 - $\blacksquare \mu$ is the friction coefficient
- During grasp analysis, the cone is approximated with an m side pyramid (b)
 - **f** is convex combination of *m* vectors



Grasplt! - Grasp Wrech Space

$$ullet$$
 Wrenches $oldsymbol{w}_{i,j} = egin{bmatrix} oldsymbol{f}_{i,j} \ \lambda(oldsymbol{d}_i imes oldsymbol{f}_{i,j}) \end{bmatrix}$

- \circ $oldsymbol{f}_{i,j}$ one of m forces from the cone at contact point i
- \circ d_i vector from the torque origin
- $\circ \lambda$ force to torque multiplicator
- GWS space of wrenches applicable to the object given limit on normal force

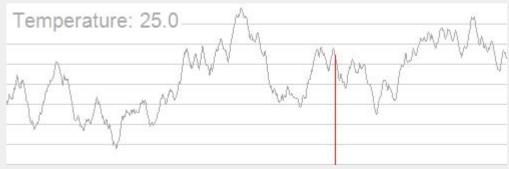
- $W_{L\infty} = ConvexHull\left(\bigoplus_{i=1}^{n} (\boldsymbol{w}_{i,j}, \dots, \boldsymbol{w}_{i,m})\right)$
 - Minkowski sum
- For 3D object the GWS is 6D -> three coordinates need to be fixed for visualization

GraspIt! - Metrics

- Task wrench space
 - Space of wrenches which needs to be applied to carry out the given task
 - 6D ball when we assume that disturbances can come from any direction
- 1) Epsilon-quality
 - Radius of the biggest 6D ball in the torque origin which can fit into unit GWS
 - The closer to 1, the better quality
- ullet 2) Volume of $oldsymbol{W}_{L1}$
 - The bigger, the better

GraspIt! - Simulated Annealing

- Used to find global extrema
- Randomly computes a neighbor of current states and probabilistically decides if to change state or not
- Use parameter "Temperature T"
 - Decreases in time
 - If T = 0, it is basic hill climbing algorithm
- Used in Grasplt! to sample possible grasps



GraspIt! - Eigengrasps

- <u>Ciocarlie et al.</u>,2007. <u>Dimensionality reduction for hand-independent dexterous robotic grasping.</u>
 <u>IEEE International Conference on Intelligent Robots and Systems.</u>
- Reduction of DOF of hands
 - Based on results from robotics and neuroscience
 - Majority of grasps lacks individual finger movements
- For example, human hand needs only 2 eigengrasps

Human	20	Thumb rotation Thumb flexion MCP flexion Index abduction	₩ →	Thumb flexion MCP extension PIP flexion	
Barrett	4	Spread angle opening		Finger flexion	∀ 4

GraspIt! - Interface

- ROS interface https://github.com/graspit-simulator/graspit interface
 - Publishes topics and services based on Grasplt! API
- Python client https://github.com/graspit-simulator/graspit-commander
 - Access the services with Python
 - Minimal knowledge of ROS needed
 - Only datatypes Point, Quaternion, etc.

```
In []: from graspit_commander import GraspitCommander
In []: GraspitCommander.clearWorld()
    GraspitCommander.importRobot("BarrettBH8_280")
    GraspitCommander.importGraspableBody("my_object.ply")
    plan = GraspitCommander.planGrasps(max_steps=70000)
```

GPD - Overview

- https://github.com/atenpas/gpd
 - ten Pas et al., 2017. Grasp Pose
 Detection in Point Clouds.

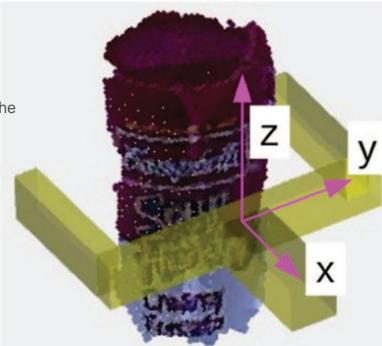
 International Journal of Robotics
 Research.
- Based on point clouds
 - o even one-view
- Machine learning
- No physical properties needed
 - o Materials, etc.
- Faster than Grasplt!
- Work in cluttered environment
- Assumes only two-finger grippers

GPD - Point Clouds

- Point clouds from RGB-D cameras
 - One view is sufficient
 - Basic pre-processing is needed
 - Denoising, downsampling, outliers removal
- Only information in Region of Interest (ROI) is considered
 - Segmented object,
 - or only given region in point cloud, e.g., workspace

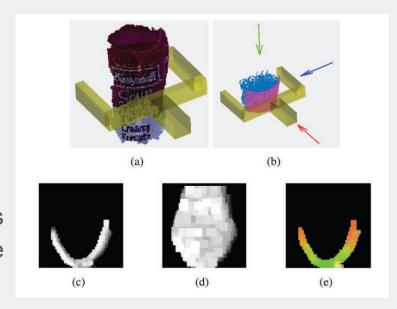
GPD - Grasps sampling

- Candidates sampled uniformly randomly over the point cloud
- Two conditions:
 - The body of the hand is not in collision with the point cloud
 - The closing region of the hand contains at least one point from the point cloud
- For each candidate, reference frame F of the hand is computed
- Grid search in grid G = Y × Z is performed. Y and Z contains values along y and z axis of F
 - Corresponding rotation and translation for each grid point are applied to the hand
- Rotated hand is pushed along negative x axis until contact with point cloud occurs
 - Last point before contact is added to set of possible grasp if any point from the point cloud is in the closing region of the hand



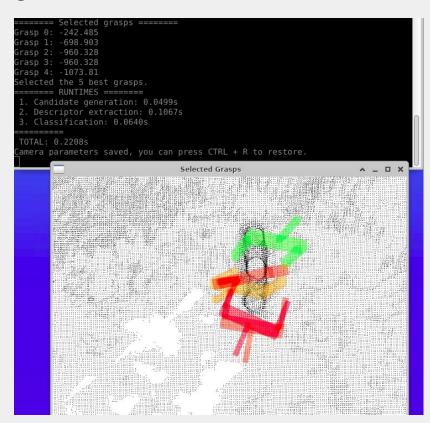
GPD - Grasp Classification

- Four-layer CNN
 - Binary classification grasp/no grasp
- Trained from 300 thousand (sampled from 1.5 million) labeled grasp for 55 objects
- Points in closing region (b) are voxelized (MxMxM voxels)
- Input to CNN are heightmaps (c, d) of voxels projected to planes orthogonal to axes of the hand (b) and surface normals (e)



GPD - Usage

- Each model contains config file
 - We will use model trained with Eigen
 - User can set ROI, grid, set visualizations
- Individual functions can be called directly
 - Written in C++
 - Our case
- Or <u>ROS Interface</u> can be used



Others - PointNetGPD

- https://github.com/lianghongzhuo/PointNetGPD
 - <u>Liang et al.</u>, 2018. PointNetGPD: Detecting Grasp <u>Configurations from Point Sets, IEEE International</u> <u>Conference on Robotics and Automation.</u>
- The same grasp sampling as GPD
- Less parameters in CNN than GPD -> less prone to overfitting
- No hand-crafted features needed for training
- Works with more sparse point clouds
- Provides dataset with 350k real point clouds
- Grasp with probability, not only binary

Comparative experiments on object set 1

GPD ×4.2 5/5 Succeed/Trail

Others - Dex-Net

- https://github.com/BerkeleyAutomation/dex-net
 - Mahler et al., 2017. Dex-Net 2.0: Deep learning to plan Robust grasps with synthetic point clouds and analytic grasp metrics. Robotics: Science and Systems.
- Provides 3D datasets with evaluated grasps
 - o 10 000 3D objects
- Provides Python package for manipulation with objects, grasps, etc.
 - Usable for testing new algorithms
- Trained Grasp-Quality CNN
 - Trained on 6.7 million point clouds

