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Action and perception for social HRI

Perceive / display. = “““"‘-’ﬁmﬂ"" IR
e verbalinteraction - speech ..._.“ff"" P ““”“‘“"'_'T...-
e nonverbalinteraction
o gaze

Fig 3.3 in Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T.,

faCiaI eXpreSSionS Keijsers, M., & Sabanovié, S. (2020). Human-Robot
Interaction: An Introduction. Cambridge University Press.
gesture

touch
posture

O O O O

° Iocatlon proxemics...
e emotion

© Matej Hoffmann, FEE CTU in Prague, 2024 3
S



Proxemics

Social Zone
Public Zone

3.6m +
Personal Zone

e How people take up spacein
relation to others and how
spatial positioning influences
attitudes, behaviors, and
interpersonal interaction.
(Bartneck et al. 2020, Ch. 5)

e Culture-dependent.

Close Intimate

0-0.15m

0.15-0.45m

TABLE 1 (northern Europeans)
HUMAN-HUMAN PERSONAL SPATIAL ZONES

Personal Spatial Zone Range Situation
Close Intimate 0t00.15m Lover or close friend touching
Intimate Zone 0.15m to 0.45m | Lover or close friend only Human-Human Personal Space Zones
Personal Zone 0.45mto 1.2m | Conversation between friends (Hall 1966; Lamberts 2004)
Social Zone 1.2mto 3.6m | Conversation to non-friends
Public Zone 3.6m+ Public speech making
© Matej Hoffmann, FEE CTU in Prague, 2024 4



Spatial interactions in HRI

e Mobilerobots and obstacle avoidance.
o Corridor scenario (Bartneck et al. 2020, 5.2.2).
m Robot and human walking against each other in a corridor. If robot treats human as an
obstacle, it may avoid it in the last moment. Very unnatural!
o  Most mapping techniques for robots only provide geometrical maps, where people are
considered obstacles. They do not contain information on which direction people are facing, if
they are having a conversation or just standing close to each other, or how people are moving.

Ch. 5 in Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., & Sabanovié, S.
(2020). Human-Robot Interaction: An Introduction. Cambridge University Press.
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TesT SITUATION

alongside each other

Fig. 1. Test situations: (a) Control condition (i.e., no courtesy cues), (b)
Courtesy 1 condition (i.e., appearing to grant the right of way by stopping), and
(c) Courtesy 2 condition (i.e., appearing to grant the right of way by stopping

opposite each other
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TEesT SITUATION

alongside each other opposite each other

ExPERIMENTAL CONDITION
[] Control

[] Courtesy 1

I B Courtesy 2

Fig. 2. Appreciation of a service robot (in mean z-values and 95% confidence
intervals) that exhibits no courtesy cues (i.e., Control condition), that appears to
grant the right of way by stopping (i.e., Courtesy 1 condition), or that appears
to grant the right of way by stopping and moving out of the way (i.e., Courtesy

2 condition).

Kaiser, F. G., Glatte, K., & Lauckner, M. (2019). How to make nonhumanoid mobile robots more likable: Employing kinesic courtesy cues to promote
appreciation. Applied ergonomics, 78, 70-75.
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Factors that may affect “comfortable” distance

who is approaching whom

robot look.../ level of anthropomorphism
robot size

personality traits (human)

context

o task-e.g.handover
o communication/ perception

See also
e Table 2.2in Rojik, A.(2021), 'Personal Spatial Zones in Human-Robot Interaction Scenarios', Bachelor
thesis, Faculty of Electrical Engineering, Czech Technical University in Prague. [link to thesis page][pdf]
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Robot with mechanistic appearance

Human-Robot Comfortable Distances for Subjects
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Note: Robot safety system prevented approaches less than 0.5m

e 40% of people came very close to the robot; why?
e Did not treat the robot as a social entity.

TABLE 1
HUMAN-HUMAN PERSONAL SPATIAL ZONES
IPersonal Spatial Zone [Range ituation
Close Intimate 0t00.15m Lover or close friend touching
Intimate Zone 0.15m to 0.45m | Lover or close friend only
Personal Zone 0.45mto 1.2m |Conversation between friends
Social Zone 1.2mto 3.6m | Conversation to non-friends
Public Zone 3.6m + Public speech making

Walters, M. L., Dautenhahn, K., Te Boekhorst, R., Koay, K. L., Kaouri, C., Woods, S., ... & Werry, . (2005, August). The
influence of subjects' personality traits on personal spatial zones in a human-robot interaction experiment. In ROMAN

2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005. (pp. 347-352). IEEE.
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Modulators of 1nterpersonal dlstance in HRI

Walters, M. L., Dautenhahn, K., Te Boekhorst,
R., Koay, K. L., Syrdal, D. S., & Nehaniv, C. L.
(2009). An empirical framework for

_ - human-robot proxemics. Procs of new frontiers
Robot A Robot B Robot C Robot D Robot E in human-robot interaction.

Figure 1 The PeopleBot™ Robots used for the large HRI Studies: A) Short Mechanoid, B) Short Humanoid, C) Tall Mechanoid, D)
Tall Humanoid. and E) the Mechanoid robot used for the robot voice style trial.

Factor I Situation(s) I Context(s) I Base Distance = 57cm
Estimated Adjustment for Factor (+ 0.5¢cm)
Attribute or Factor of Robot

Mechanoid Robot I_(’H Approach AL -3
R Approach -7
Humanoid Robot hH Approach All +3

R Approach -1
Verbal Communication I{H Approach \Verbal Interaction +3
M object IU-[ Approach Physical Interaction -7
‘m object I(H Approach Physical Interaction -7?
‘Passinﬁ RH Approach No Interaction +4
PDirection from: I(H Approach Front +2
Right/Leﬂ -2
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Speech Volume

Public Social Personal Intimate )
Distance Distance Distance Distance

Distance ,' —
* Foveal (1.5°) - - ===y
S Macular (669 e —— T T B = g Angle
Visual m R Peripheral (95°) Distance
Voice Loudness Very Loud | Loud | Normal Plus | Normal | soft | Very Soft Fig. 5.6 in Bartneck, C., Belpaeme, T.,
5 Dutside Reach [ Reach | Arm ] Body Eyssel, F., Kanda, T, Keijsers, M., &
Olfaction Not Present [Probable | Detectable e L » M.,
Thermal Not Present TProbable | Detectable Sabanovi¢, S. (2020). Human-Robot
Touch No Contact | Contact Interaction: An Introduction. Cambridge

University Press.

Fig. 1. Relationships between interpersonal pose and sensory experiences (3,2, 11].

Mead, R., & Matari¢, M. J. (2016). Perceptual models of human-robot proxemics. In TABLE 1
Experimental robotics (pp. 261-276). Springer, Cham. HUMAN-HUMAN PERSONAL SPATIAL ZONES
IPersonal Spatial Zone [Range ituation
Close Intimate 0t00.15m Lover or close friend touching
Intimate Zone 0.15m to 0.45m | Lover or close friend only
Personal Zone 0.45mto 1.2m | Conversation between friends
Social Zone 1.2mto 3.6m | Conversation to non-friends
Public Zone 3.6m+ Public speech making
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°
R()b Ot ln a crOWd Chen, C,, Liu, Y., Kreiss, S., & Alahi, A. (2019, May). Crowd-robot

interaction: Crowd-aware robot navigation with attention-based deep
reinforcement learning. In 2019 International Conference on Robotics
and Automation (ICRA) (pp. 6015-6022). IEEE.
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Human or robot spatial zones?

e Most literature is concerned with the comfort of the human, i.e. robots not
inappropriately invading human spatial zones.

e Do people also care about the robot’s personal space?
o Do they expect it to scale with the robot size?
o Do they expect the robot to protect it / signal that it is not comfortable with his space being
invaded?

© Matej Hoffmann, FEE CTU in Prague, 2024 12
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Robot personal space

‘Touch: None

7
2019.06.26 13:41:14
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https://youtu.be/qvICAKIK2CA

Lehmann, H.; Rojik, A. & Hoffmann, M. (2020), Should a
small robot have a small personal space? Investigating
personal spatial zones and proxemic behavior in
human-robot interaction, in 'Cognitlve RobotiCs for
intEraction (CIRCE) Workshop at IEEE International
Conference On Robot and Human Interactive
Communication (RO-MAN)"

13



https://youtu.be/gvICAkfK2CA
http://www.youtube.com/watch?v=gvICAkfK2CA

Scaling of personal space to robot size?

Rojik, A. (2021), 'Personal
Spatial Zones in Human-Robot
Interaction Scenarios,
Bachelor thesis, Faculty of
Electrical Engineering, Czech
Technical University in Prague.
[link to thesis page][pdf]

intimate space
personal space
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https://dspace.cvut.cz/handle/10467/92799
https://dspace.cvut.cz/bitstream/handle/10467/92799/F3-BP-2021-Rojik-Adam-BS_Thesis_Adam_Rojik.pdf?sequence=-1&isAllowed=y

Experimental setup

Experiment | Robot | Condition | Gaze distance | Lean-back distance | Differential lean-back distance
Robot 0.42m 0.16m
NAQ:1 Nao Human 1.2m 0.45m B
P Pe Robot 0.81m 0.3m—0.1m
epper PP | Human 1.2m B 0.45m—0.1m
Robot 0.42m 0.16 m—0.1m
NAO:2 Nao Human 1.2m ) 0.45m—0.1m

Table 4.2: Triggering distances for different conditions and robots. Control
condition is omitted as it is random.

Rojik, A. (2021), 'Personal Spatial Zones in Human-Robot Interaction
Scenarios', Bachelor thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague. [link to thesis page][pdf]

© Matej Hoffmann, FEE CTU in Prague, 2024 15
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Perceiving the distance

—p depth image
j 2 56@ 3
. LN :
RGB-D - RGB iImage > OpenPose > T
camera keypoints
& filtering
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Lehmann, H.; Rojik, A. & Hoffmann, M. (2020), Should a small robot have a small personal space? Investigating personal spatial
zones and proxemic behavior in human-robot interaction, in 'Cognitlve RobotiCs for intEraction (CIRCE) Workshop at IEEE

International Conference On Robot and Human Interactive Communication (RO-MAN)".

16




Results - distance {rom the robot where people stopped
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e people do not scale robot
personal space with its size

Rojik, A. (2021), 'Personal Spatial Zones in Human-Robot Interaction
Scenarios', Bachelor thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague. [link to thesis page][pdf]
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Leaning back to signal intrusion of personal space

Lean-back meaning  C R H Total

awareness 7.14% 7.14% 14.29% 8
surprise 10.71% 17.86% 3.57% 8
keeping distance 14.29% 3.57% 7.14% 7
shock 0.00% 3.57% 3.57% 2
tallness 0.00% 3.57% 0.00% 1
respect 0.00% 3.57% 0.00% 1
agreement 0.00% 3.57% 0.00% 1

32.14% 42.86% 28.57% 28

Table 7.9: Participants interpretation of the Nao’s lean-back behavior.

keeping distance 16.00% 4.00% 16.00% 9
shock 8.00% 8.00% 4.00% 5
surprised 4.00% 8.00% 4.00% 3
curious 0.00% 0.00% 8.00% 2
distrust 0.00% 4.00% 4.00% 2
gazing 0.00% 4.00% 0.00% 1
odd 0.00% 0.00% 4.00% 1
respect 0.00% 4.00% 0.00% 1
tallness 0.00% 0.00% 4.00% 1
saw 28.00% 32.00% 44.00% 25
Table 7.4: Participants interpretation of the Pepper’s lean-back behavior.
© Matej Hoffmann, FEE CTU in Prague, 2024 18



Group spatial interaction dynamics

Figure 5.4

r-space
Kendon’'s

P S,

F-formations come
in several variants,
all of which include
the components of
o-, p-, and r-space,
namely (a) the
face-to-face, (b)
the L, (c) the
side-by-side, and a) b) C) d)
(d) the circular

formation.

\\ /
. P-space .

-
N - -

Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., & Sabanovi¢, S. (2020). Human-Robot Interaction: An Introduction. Cambridge University Press.
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Distance in SHRI and pHRI

Expectable motion unit

Kirschner, R. J., Mayer, H., Burr, L., Mansfeld, N.,
Abdolshah, S., & Haddadin, S. (2022). Expectable Motion
Unit: Avoiding Hazards From Human Involuntary Motions in
Human-Robot Interaction. IEEE Robotics and Automation
Letters.

https://ieeexplore.ieee.ora/abstract/document/9690007/medi
a#media

© Matej Hoffmann, FEE CTU in Prague, 2024

safe human-aware motion generation

cognitive

human factors

robot factors

involuntary ‘ injury
motion analysis analysis

expectation
modellin

Fig. 1. Proposed framework for safe human-aware motion generation that
combines cognitive-grounded safety aspects and well-established physical
safety considerations and paradigms. The main contribution of this work is an
experimental model of human involuntary motion (IM) occurrence in HRI and
the derivation of the Expectable Motion Unit (EMU), which avoids potentially
dangerous human IM in HRI.
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Motion planning - what you already know

Robotika (B3B33ROB1) - Motion planning (Vladimir Petrik) /
Autonomous Robotics (BBM33ARO) - Vojtéch Vonasek

e configuration space (vs. task space)
e pathvs. trajectory
e sampling-based motion planning (RRT, RRT* PRM)

© Matej Hoffmann, FEE CTU in Prague, 2024 21
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RRT for manipulators |

e g=(¢1,...,%n), njoints

e x = position of the link/end-effector

e x can contain also rotation if needed

e Forward kinematics: x = FK(q)

e Inverse kinematics: g = IK(x)

e Collision detection needs joint coordinates!

« We need A;(q) (position of link i at g)
» Collision detection is between A;(q) and O

e Collision detection for end-effector pose x:

o Compute g = IK(x)
» Derive Ai(q)

Spaces:

end-effector
Jjoint 1 f
=
Two arms
links A4 and Az

e Workspace/Cartesian space/Operation space —
we plan path for end-effector (IK to joint space)

e Joint-space — we plan path by driving joints (FK to
end-effector)

OO &oiw

ENGINEERING
CTU IN PRAGUE

Planning via inverse kinematics

> X

We plan path of end-effector in workspace Xeaind
Naive usage of RRT for manipulators (x.y)
Sampling, tree growth, nearest-neighbor s. in W g 9,
Xand 1S generated randomly from W
Xeana 1S the position of end-effector! 2 9
Xnear NEArESt in tree towards X.ang A‘x
Make straigh-line from X,ea t0 Xang With resolution e x=(y)ew
For each waypoint x on the line:

e q = IK(x), check collisions at g xmi;tx\ @

near goal

Problem with singularities ‘ *

o line from X, 10 X2 May contain singularity X new "‘-..Xm,,d ol

o it may result in unwanted reconfiguration S —

Requires (fast) inverse kinematics
Task/dynamic constraints difficult to evaluate

V. Vonasek: ARO, Motion Planning Il - sampling-based motion planners, slides 12-13
https://cw.fel.cvut.cz/b212/ media/courses/b3m33aro/lectures/planning-sampling2.pdf

© Matej Hoffmann, FEE CTU in Prague, 2024
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RRT for manipulators I

Planning via forward kinematics

o We plan path in joint-space (=C) (x,y)
e Sampling, tree growth and nearest-neighbor s. in C y o

e Assume that joint / can change by +A; zand
e U is set of possible changes of the joints, e.g.: N,

U = {(—A1,0),(A1,0),(0,-A2),(0, Ap),...} Yoy "
® Quna IS generated randomly in C g="io1, p5) € €
® Quear IS its Nearest neighbor in 7 treeisin C
e Tree expansion: for each u € U: 5

« Apply U10 G’ G = Gear + U o dNoA
« Check collision of A;(q') 2 272
« add to tree such ¢ that is collision-free and y
minimizes distance to Grand g )90
X

X Goal state needs to be defined in C!
v No issues with singularities
v Task/dynamics constraints can be easily checked

u=(0,-Ay),
q' = (p1 + 0,02 — Ap)

RRT for manipulators IV

Planning with the task-space bias

e Combination of the two previous approaches
e Sampling in W (task-space), tree growth in C (joint
space)

e Eachnodeinthetreeis(g,x),geC, xeW

e g-partis used for the tree expansion

o x-part is used for the nearest-neighbor search
® X.nd IS generated randomly from W,
® Xear IS Nearest node from 7 towards X.,,a measured in W
e Get joint angles: Qrana = /K (Xrana) @nd Guear = 1K (Xnear)
® Quew = Straight-line expansion from Quea 10 Grana (in C)
e add gnew and FK(gnew) to the tree if it's collision-free

v/ Advantages: no problem with singularities, can handle
task/dynamic constraints, the goal can be specified only
in task space

V. Vonasek: ARO, Motion Planning Il - sampling-based motion planners, slides 14-15
https://cw.fel.cvut.cz/b212/ media/courses/b3m33aro/lectures/planning-sampling2.pdf

© Matej Hoffmann, FEE CTU in Prague, 2024

X
T xy)
y
)
o (P



https://cw.fel.cvut.cz/b212/_media/courses/b3m33aro/lectures/planning-sampling2.pdf

Next: path/trajectory not to scare people!

Shortest path vs. fastest path vs. path for good spraying

V. Vonasek: ARO, Motion Planning | -
basic concepts, slide 48

https://cw.fel.cvut.cz/b212/ media/co
urses/b3m33aro/lectures/planning-ba
sics.pdf

© Matej Hoffmann, FEE CTU in Prague, 2024 24
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What is being optimized?

Object hand-over

legibility (here ~ visibility)

swissranger 30 camera
stereo camera bank

pan-tilt unit

anelPC
with tactile screer
1 axis grip with
(in back) 3 tactile fingers
(gauges + artficial skin)
2P4PC
6a
force sensor
laser scanner
(in back)
laser scanner in front

2 motor wheels

physical
comfort

Fig. 1. Jido and a View from the experimental setup. The human is placed in front of the robot on a chair.

Dehais, F., Sisbot, E. A., Alami, R., & Causse, M. (2011). Physiological and subjective evaluation of a human—robot object hand-over task.
Applied ergonomics, 42(6), 785-791.

© Matej Hoffmann, FEE CTU in Prague, 2024




Planning around humans

e Navigation - humans are not obstacles.
o  Needto consider:
m interpersonal social zones
m gaze
m context
e Motion should be:
o safe,i.e.that does not harm the human,
o reliable and effective, i.e. that achieves the task

adequately considering the motion capacities of the Shomin, M., Vaidya, B., Hollis, R., & Forlizzi, J. (2014,
I’ObOt, September). Human-approaching trajectories for a
. . . -sized balancing robot. In 2014 IEEE
o socially acceptable, i.e. that takes into account the person-slzed paenang rovar. M

; International Workshop on Advanced Robotics and its
comfort of the human as well as his/her preferences Social Impacts (pp. 20-25). |IEEE.

and needs; and that expresses the intention of the
robot clearly (~ legible, which also adds to safety)...
o Sisbot, E. A., Marin-Urias, L. F., Broquere, X., Sidobre, D., & Alami, R.

(2010). Synthesizing robot motions adapted to human presence.
International Journal of Social Robotics, 2(3), 329-343.

© Matej Hoffmann, FEE CTU in Prague, 2024 26
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""""" start Human

Perspective m— Aware
Placement Navigation Manipulation
Planner
U 4
Task Soft Motion

Trajectory

Planner

Trajectory
Fig. 2 The data flow between the three motion synthesis system com-
ponents
Sisbot, E. A., Marin-Urias, L. F., Broquere, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot

motions adapted to human presence. International Journal of Social Robotics, 2(3), 329-343.
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Gtarget---------- Gstart ':\""Nr:?:
Navigation —{ R
Planner

UQi
\J

Soft Motion
Trajectory
Planner

Task

Trajectory

Fig. 2 The data flow between the three motion synthesis system com-
ponents

Fig. 5 The robot has to
compute a placement where it
can talk with the human in the
middle of the scene (indicated
with an arrow). The presence of
the other persons in the
environment influences the costs
and the quality of the position.
(a), (b), and (c) illustrate the
resulting costs, quality and
utility functions for the target
human on the grid. (d) The
initial position of the robot.

(e) The placement that has been
computed by PSP. Note that, on
the top right, the system shows
the estimated camera view of
the robot. Safety and comfort
distances toward the other
persons present in the
environment are also respected

W ens

(a) Costs (b) Quality (c) Utility

(d) Inmitial configuration on the robot position. (e) Computed configuration and its perspective

Sisbot, E. A., Marin-Urias, L. F., Broquere, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot
motions adapted to human presence. International Journal of Social Robotics, 2(3), 329-343.

© Matej Hoffmann, FEE CTU in Prague, 2024
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Human
Aware
Manipulation
Planner

UQi
A4

Soft Motion
Trajectory
Planner

Task

Trajectory

Fig. 2 The data flow between the three motion synthesis system com-

DL,

ponents

Fig. 7 Calculated path for a “handing over an object” scenario. The
robot looks at the object during this motion, ensuring the clarity of its
intention to the human. As seen in the final figure, a “simple” hand
over task results in a quite complete robot motion involving almost all
its upper body in order to increase the legibility

© Matej Hoffmann, FEE CTU in Prague, 2024

Fig. 6 10 points around the human having lowest costs to place the ob-
ject. The order of weights change drastically the result of the process.
The figure illustrates the case where (a) the safety is the most impor-
tant. In case of figure (b) the visibility is dominant, in figure (c¢) the
comfort of the arm is more important

Sisbot, E. A., Marin-Urias, L. F., Broquere, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot

motions adapted to human presence. International Journal of Social Robotics, 2(3), 329-343.
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Planning for humanoids

“C-space of 4 dimensions is already
considered high-dimensional.”

V. Vonasek: ARO - Motion Planning | - basic concepts.
https://cw.fel.cvut.cz/b212/ media/courses/b3m33aro/lectures/
planning-basics.pdf

Most recently developed bipedal humanoid robots with a full humanoid body plan, from left to right, top to bottom: Asimo, Atlas, Atlas-Unplugged, Digit,
HRP-5P, Hydra, Kengoro, NimbRo-OP2X, TALOS, Toro, Valkyrie, WALK-MAN

Name Height  Weight  Actuation No.of  sensing Manufacture Year Tentative
(em) (kg actuators price

Asimo (2011 model) 130 48 Electric 57 Joints: position Magnesium 2011 | 2500000 USD
Harmonic Drive IMU, 2x F/T, Camera alloy

Atles (Next Generation) 150 75 Hydraulic £ Joints: position, force Metal, 2016 N/A
senvovalves Lidar, Stereo vision 30-printed

Atles-Unplugged 188 182 Hydraulic 20 Joints: position, force Aluminium 2015 | 2000000 USD
senvovalves Lidar, Stereo vision Ttanium

Digit 155 422 Electiic 16 Joints: position Aluminium, milled | 2019 | 250000 USD
Cycloid Drive IMU, Lider, x Depth Cam. Carbon fiber

HRP-5P 183 101 Electric a7 Joints: position Metal 2018 N/A
Harmonic Drive. AXF/T,IMU, Lidar (unspecified)

Stereo Vision

Hydra 185 135 Hydaulic a Joints: position, force Aluminium 2016 N/A
EHA IMU, 2x /T, Lidar, Stereo milled

Kengoro 167 559 Electric 106 Joints: position, tension Aluminium 2016 N/A
Muscle /w Tendons IMU, 2x F/T, Stereo Vision 30-printed

NImbRo-0P2(X) 135 19 Electric 3 Joints: position PA12 Nylon 2017 | 25000 EUR
DC Servo-motors IMU, Stereo Vision 30-printed

TALOS 175 e Electric 2 Joints: position, torque Metal 2017 | 900000 EUR
Hamonic Drive IMU, RGBD camera (unspecified)

Toro 174 764 Electric 39 Joints: position, torque Aluminium 2014 N/A
Harmonic Drive 2¢IMU, RGB&D cameras milled

Valkyrie 187 129 Electric “ Joints: position, force, torque Metal 2013 | 2000000 USD
SEA 7« IMU, 24F/T, Multiple cameras _ (unspecified)

WALKMAN 191 132 Eectric 29 Joints: positon, orque. Aluminium 2015 N/A
SEA 20IMU, 4x F/T, Lidar milled

Stereo Vision

Ficht, G., & Behnke, S. (2021). Bipedal humanoid hardware design: A technology review. Current Robotics Reports, 2(2), 201-210.
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Decomposition: upper body: manipulation; lower body: walking

Start / goal position Dynamic humanoid
Environment motion
Input Output A ¢

Motion planning

Motion planner /
reshaper

Robot Task |y

Collision or
Too near?

« & orientation ' 1 motion : Collision checker

Dynamic pattern

generator
. [
+ 3D Waist position /' yoine angles |
' &orientation . t------T-- !

Dynamic motion generation

Fig. 1 Two-stage motion planning framework. Based on kinematic and geometric motion plan-
ning, the first stage generates a collision-free path that is later converted into dynamic motion in
the second stage. If collisions are detected the path is sent back to the first stage. This process is
repeated until a collision-free dynamic trajectory is obtained

Yoshida, E., Kanehiro, F., & Laumond, J. P. (2017). Whole-body motion planning. Humanoid Robotics: A Reference, 1575-1599.

© Matej Hoffmann, FEE CTU in Prague, 2024

Fig. 2 Humanoid modeled
by rectangle box with a bar.
In the first stage, the
geometric and kinematic path
planner generates
collision-free path for the
9-DOF system including
robot waist (r, 3-DOF) and
object (R,, 6-DOF)

Fig. 3 Transition of robot
configurations during the
reshaping. The colliding part
of the carried object goes
away from the obstacle by
increasing tolerance




Task-driven local whole-body motion generation

A | ﬁl‘* .-
,44. { 'k -— Bl -

Task: reaching end-effector

|

\ 4
W

Task Priority: End-effector

.o : Center of mass
: | Generalized 1K | Gaze ...

5

Constraints: Manipulability
End-effector error ...

+ [Task not accomplished]

1 Generalized IK |

: +
Support polygon reshaping
Dynamic pattern generation

= Whole-body motion

g e DT

............

Fig. 5 A general framework for task-driven whole-body motion including simultaneous reaching

. . . . . : : Fig. 6 A whole-body grasping motion generated through task-priority generalized inverse kine-
and stepping [53]. If the desired tasks cannot be achieved, stepping motion is generated to increase adiica 1831 Vs anil Lsvgr bt o contlitaratn actlevs e, b red asping ik il making
the workspace a step and maintaining the balance

Yoshida, E., Kanehiro, F., & Laumond, J. P. (2017). Whole-body motion planning. Humanoid Robotics: A Reference, 1575-1599.
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Motion planning for dynamic environments

https://youtu.be/A9Por3anPJ8

Nguyen, P. D.; Hoffmann, M.; Roncone, A.; Pattacini, U. & Metta, G. (2018), Compact real-time avoidance on a humanoid robot for human-robot
interaction, in '"HRI’18: 2018 ACM/IEEE International Conference on Human-Robot Interaction’, ACM, New York, NY, USA, pp. 416-424.

© Matej Hoffmann, FEE CTU in Prague, 2024
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Fast heuristic Cartesian space motion planning

] Objects
Perception (Target,
Obstacles..)

Control points

position K
inematic planning i | yaths of the
Chain request 1 | Control points

Multiple-Cartesian-

user's 5
._point Controller

request

References
of Control
points

Nguyen, P. D.; Hoffmann, M.; Pattacini, U. & Metta, G. (2016), A fast heuristic Cartesian space motion planning algorithm for many-DoF robotic
manipulators in dynamic environments, in 'Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on', IEEE, pp. 884-891.
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Fast heuristic Cartesian space motion planning algorithm

(b)

Fig. 3: Schematics of a 2 DoF planar manipulator with obstacles (red) and target (green). (a) Part of a plan for End-Effector
and elbow (EB) illustraing that a collision-free path for the two control points does not guarantee that no collisions will
occur for the whole manipulator occupancy (b) Introduction of another control point in the forearm link helps to avoid
collisions, eventually leading to collision-free path from start to goal as shown in c).

Nguyen, P. D.; Hoffmann, M.; Pattacini, U. & Metta, G. (2016), A fast heuristic Cartesian space motion planning algorithm for many-DoF robotic
manipulators in dynamic environments, in 'Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on', IEEE, pp. 884-891.
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https://docs.google.com/file/d/11vAmSZaJWSzDjfH2m-HKJW1LzJ03TakD/preview

Fast heuristic Cartesian space motion planning

Algorithm 1 Multiple Cartesian point planning Algorithm P .
 ESTINATE W ORKSPACE - II’ERCENTAGE ?F TRIALS OVE]R PLANNING T[IME (deadllne-?.1s, 1000 tnaIsT)

2: UPDATE — MANIPULATOR — POSE
3: OBTAIN — SCENE

4: repeat

5 clear(EE — path) 70 N
6: while (\EE — path) do

7: MODULAR — PLANNER(EE EE — pos, GOAL) —_

8:  end while &\o’ 60 =
9: if (EE — path) then %)

10: for all w; € (EE — path) do -

1l DILATE — OBSTACLE (w;) é 50 B
12: end for -

13: repeat [T

14: i=0 ]

15: smp = MP — pos L 40

16: repeat 2

17: PICK — VIAPOINT (w;, wis1 ) =

18: gmp = goalyp < wit 5 30 .
19: MODULAR — PLANNER(MP, syp, gmp) O

20: if (size(MP — path) > 2) then o

21: sucess < PAD —VIAPOINT (EE) E 20 -
22: end if

23: i—i+1

24: SMp = 8MP 10 .
25: until size(EE — path) = size(MP — path)

26: FIND — ELBOW

27: sucess - CHECK — COLLISION — ELBOW 0 0.30 0.20 0.50

D TR entlivens) <05s 0.55-1.0s 1.0s-2.0s 2.0s-5.0s 5.05-10.0s >10.0s

30: until (success) PLANNING TIME (S)

Nguyen, P. D.; Hoffmann, M.; Pattacini, U. & Metta, G. (2016), A fast heuristic Cartesian space motion planning algorithm for many-DoF robotic
manipulators in dynamic environments, in 'Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on', IEEE, pp. 884-891.
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Fast heuristic Cartesian space motion planning

Success Mean Cal.

Asymptotically optimal planner
rate (%) Time (s)

m}
‘

el RRT* 11.93 10.012
2 aa | T | Our 100 0.454
owr - TR 5|
.. - - - @ PRM* 9.17 10.059
E | T 3 Our 100 0.440
§ | | 7 N %_T ¢ I Y
Rl | ] [ - RRTConnect  8.26 3.989

of-: 0.3 0.5 oA7 o9 13 "8 "5 Our 100 0.411

MAX TIME FOR SINGLE MODULAR PLANNER (s)

Nguyen, P. D.; Hoffmann, M.; Pattacini, U. & Metta, G. (2016), A fast heuristic Cartesian space motion planning algorithm for many-DoF robotic
manipulators in dynamic environments, in 'Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on', IEEE, pp. 884-891.
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Some take-home messages

1. Spatial interaction in HRI - proxemics
a. Humans are not obstacles.
2. Motion planning for human-populated environments
a. Notoptimal, but safe, socially acceptable, and legible behaviors.
3. Motion planning for humanoids

a. There are many DoFs.
b. And many constraints (e.g. balance).

© Matej Hoffmann, FEE CTU in Prague, 2024 39
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Further reading and resources

e Books /book sections
o Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., & Sabanovié, S. (2020). Human-Robot
Interaction: An Introduction. Cambridge University Press.
o Yoshida, E., Kanehiro, F., & Laumond, J. P. (2017). Whole-body motion planning. Humanoid Robotics: A
Reference, 1575-1599.
e Atrticles
o Sisbot, E. A., Marin-Urias, L. F., Broquere, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot
motions adapted to human presence. International Journal of Social Robotics, 2(3), 329-343.
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