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3 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different
view points. We will next investigate how to (re-)construct camera pro-
jection matrices and meaningful coordinates of points in the space such
that the reconstructed cameras and the reconstructed points generate the
images.

3.1 Epipolar geometry

Figure 3.1 shows two cameras with different centers C1, C2 and image
planes π1, π2, observing a general point X as u1, u2. Baseline b connecting

π1 π2

σ

C1 C2b

u1 u2

l1 l2

e1 e2

X

Figure 3.1: Epipolar geometry of two cameras.
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Figure 3.2: Vectors of the epipolar geometry.

image centers C1, C2 intersects π1, π2 in epipoles e1, e2. Points C1, C2 and
X form epipolar plane σ, which intersects π1 in epipolar line l1 and π2 in
epipolar line l2. Epipolar line l1 passes through epipole e1 and through
image point u1. Epipolar line l2 passes through epipole e2 and through
image point u2.

Let us next find the relationship between image points, epipoles, epipo-
lar lines as a function of camera parameters, Figure 3.2. Assume a world
coordinate system pO, δq and cameras C1, C2 with camera projection ma-
trices

P1 “
”

K1R1 | ´ K1R1
#C1δ

ı

and P2 “
”

K2R2 | ´ K2R2
#C2δ

ı

(3.1)

Point X is projected to image planes π1, π2, with respective coordinate
systems po1, β1q, po2, β2q, as

ζ1 #x1β1 “ P1

„

#Xδ
1



and ζ2 #x2β2 “ P2

„

#Xδ
1



(3.2)
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for some ζ1 ą 0 and ζ2 ą 0, which then leads to

ζ1 #x1β1 “ K1R1p#Xδ ´ #C1δq and ζ2 #x2β2 “ K2R2p#Xδ ´ #C2δq (3.3)

ζ1 R
J
1 K

´1
1
#x1β1 “ #Xδ ´ #C1δ ζ2 R

J
2 K

´1
2
#x2β2 “ #Xδ ´ #C2δ (3.4)

Consider now that vectors #Xδ´ #C1δ, #Xδ´ #C2δ and #C2δ´ #C1δ form a triangle
and hence

#C2δ ´ #C1δ “ p#Xδ ´ #C1δq ´ p#Xδ ´ #C2δq (3.5)

#C2δ ´ #C1δ “ ζ1 R
J
1 K

´1
1
#x1β1 ´ ζ2 R

J
2 K

´1
2
#x2β2 (3.6)

with ζ1 ą 0 and ζ2 ą 0 for the standard choice of camera coordinate
systems.

We shall next eliminate depths ζ1, ζ2 by exploiting the vector product
identities, see Paragraph 1.3,

#0 “ #x ˆ #x “ r#xsˆ #x (3.7)

#0 “ #yJp#x ˆ #yq “ #yJ r#xsˆ #y (3.8)

for all #x, #y P R3.

We first vector-multiply Equation 3.6 by #C2δ ´ #C1δ from the left to get

0 “
”

#C2δ ´ #C1δ

ı

ˆ
ζ1 R

J
1 K

´1
1
#x1β1 ´

”

#C2δ ´ #C1δ

ı

ˆ
ζ2 R

J
2 K

´1
2
#x2β2 (3.9)

and then multiply Equation 3.9 by ζ2 #xJ
2β2
K´J

2 R2 from the left to get

0 “ ζ2 #xJ
2β2
K´J

2 R2

”

#C2δ ´ #C1δ

ı

ˆ
ζ1 R

J
1 K

´1
1
#x1β1 (3.10)

which, since ζ1 ‰ 0 and ζ2 ‰ 0, is equivalent with

0 “ #xJ
2β2
K´J

2 R2

”

#C2δ ´ #C1δ

ı

ˆ
RJ

1 K
´1
1
#x1β1 (3.11)

0 “ #xJ
2β2
K´J

2 E K
´1
1
#x1β1 (3.12)

0 “ #xJ
2β2
F #x1β1 (3.13)
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where we introduced the essential matrix E P R3ˆ3 as

E “ R2

”

#C2δ ´ #C1δ

ı

ˆ
RJ

1 (3.14)

and the fundamental matrix F P R3ˆ3 as

F “ K´J
2 R2

”

#C2δ ´ #C1δ

ı

ˆ
RJ

1 K
´1
1

(3.15)

Let us next introduce epipoles to pass from vectors in δ to vectors in
β1, β2, which are measurable in images.

The projection e1 of the the camera center #C2 to the first image as well

as the projection e2 of the the camera center #C1 to the second image are
obtained as

ζ1#e1β1 “ P1

„

#C2δ

1



“ K1R1p#C2δ ´ #C1δq (3.16)

ζ2#e2β2 “ P2

„

#C1δ

1



“ K2R2p#C1δ ´ #C2δq (3.17)

for some ζ1 ą 0 and ζ2 ą 0.
We can now substitute Equation 3.16 into Equation 3.15 to get

F “ K´J
2 R2

”

#C2δ ´ #C1δ

ı

ˆ
RJ

1 K
´1
1

(3.18)

“ K´J
2 R2

”

ζ1 R
J
1 K

´1
1
#e1β1

ı

ˆ
RJ

1 K
´1
1

(3.19)

“ ζ1K
´J
2 R2

pRJ
1 K

´1
1

q´J

ˇ

ˇ

ˇpRJ
1
K´1

1
q´J

ˇ

ˇ

ˇ

“

#e1β1

‰

ˆ
(3.20)

“
ζ1

|K1|
K´J

2 R2R
J
1 K

J
1

“

#e1β1

‰

ˆ
(3.21)

We used the result from § 2, which shows how the vector product behaves
under the change of a basis.
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Analogically, we substitute Equation 3.17 into Equation 3.15 to get

F “ K´J
2 R2

”

#C2δ ´ #C1δ

ı

ˆ
RJ

1 K
´1
1

(3.22)

“ K´J
2 R2

”

´ζ2 R
J
2 K

´1
2
#e2β2

ı

ˆ
RJ

1 K
´1
1

(3.23)

“
ˆ

”

ζ2 R
J
2 K

´1
2
#e2β2

ı

ˆ
RJ

2 K
´1
2

˙J

RJ
1 K

´1
1

(3.24)

“
ˆ

ζ2

|K2|
RJ

2 K
J
2

“

#e2β2

‰

ˆ

˙J

RJ
1 K

´1
1

(3.25)

“ ´
ζ2

|K2|
“

#e2β2

‰

ˆ
K2R2R

J
1 K

´1
1

(3.26)

We used additional properties of the linear representation of the vector
product from § 3.

We see from Equations 3.21 and 3.26 that it is possible to recover homo-
geneous coordinates of the epipoles from F by solving equations

F#e1β1 “ 0 and FJ#e2β2 “ 0 (3.27)

for a non-zero multiples of #e1β1 , #e2β2 . We also see that matrix F has rank
smaller than three since it has a non-zero null space #e1β1 . Since, rank of
”

#C2δ ´ #C1δ

ı

ˆ
is two for non-zero #C2δ ´ #C1δ, F has rank two when camera

centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the

corresponding points in images and the epipoles, i.e. l1 “ x1 _ e1 and
l2x “ x2 _ e2. Consider that there holds

#xJ
2β2
F#e1β1 “ 0 and #xJ

1β1
FJ#e2β2 “ 0 (3.28)

#xJ
2β2
F #x1β1 “ 0 #xJ

1β1
FJ#x2β2 “ 0 (3.29)

(3.30)
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and therefore homogeneous coordinates#l1β̄1
#l2β̄2

of epipolar lines generated

by #x2β2 and #x1β1 , respectively, are obtained as

#l1β̄1
“ FJ#x2β2 and #l2β̄2

“ F #x1β1 (3.31)

for #x2β2 ‰ #e2β2 and #x1β1 ‰ #e1β1 .

3.2 Computing epipolar geometry from image
matches

Let us look at how to compute the epipolar geometry between images
from image matches. Our goal is to find matrix G “ τF for some real
non-zero τ using Equation 3.13. Let us introduce

G “

»

–

g11 g12 g13

g21 g22 g23

g31 g32 g33

fi

fl (3.32)

and write Equation 3.13 as

0 “ #xJ

2iβ2
G #x1iβ1 “

“

u2i v2i w2i

‰

»

–

g11 g12 g13

g21 g22 g23

g31 g32 g33

fi

fl

»

–

u1i

v1i

w1i

fi

fl (3.33)

0 “
“

u2i u1i u2i v1i u2i w1i v2i u1i v2i v1i v2i w1i w2i u1i w2i v1i w2i w1i

‰

»

—

—

—

–

g11

g12
...

g33

fi

ffi

ffi

ffi

fl

for the i-th pair of the corresponding points #x1iβ1 , #x2iβ2 in the two images.
Notice that we can work even with ideal points when w1i “ 0 or w2i “ 0.

We can solve this way for a non-zero multiple of F from eight corre-
spondences in a general position, i.e. not all on a plane or on some special
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quadrics passing through camera centers [11]. If there is noise in image
coordinates, we in general get a rank three matrix.

To avoid this problem, we can use only seven point correspondences to
compute a two dimensional space of solutions

G “ G1 ` α G2 (3.34)

generated form its basis G1, G2 by α. Then we use the constraint

0 “ |G| “ |G1 ` α G2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

g111 g112 g113
g121 g122 g123
g131 g132 g133

fi

fl ` α

»

–

g211 g212 g213
g221 g222 g223
g231 g232 g233

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.35)
to find α by solving a third order polynomial

0 “ a3 α3 ` a2 α2 ` a1 α` a0 (3.36)

a3 “ |G2|
a2 “ g221 g232 g113 ´ g221 g212 g133 ` g211 g222 g133 ` g231 g112 g223

`g231 g212 g123 ´ g211 g223 g132 ´ g231 g122 g213 ´ g231 g222 g113

´g211 g123 g232 ` g121 g232 g213 ` g221 g132 g213 ` g131 g212 g223

´g121 g212 g233 ´ g111 g223 g232 ´ g221 g112 g233 ` g211 g122 g233

`g111 g222 g233 ´ g131 g222 g213

a1 “ g111 g122 g233 ` g111 g222 g133 ` g231 g112 g123 ´ g121 g112 g233

´g211 g123 g132 ´ g221 g112 g133 ´ g231 g122 g113 ` g211 g122 g133

`g121 g132 g213 ` g121 g232 g113 ` g131 g212 g123 ´ g121 g212 g133

´g131 g222 g113 ` g221 g132 g113 ´ g111 g123 g232 ´ g131 g122 g213

`g131 g112 g223 ´ g111 g223 g132

a0 “ |G1|

That will give us up to three rank two matrices G.
Notice that we assumed that G was constructed with a non-zero coeffi-

cient at G1. We therefore also need to check G “ G2 for a solution.
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3.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to find camera

projection matrices P1, P2, and coordinates of points in the scene #Xδ such

that the points #Xδ are projected by cameras P1, P2 to observed image points
#x1β1 , #x2β2

ζ1 #x1β1 “ P1

„

#Xδ
1



and ζ2 #x2β2 “ P2

„

#Xδ
1



(3.37)

for some positive real ζ1, ζ2.
Assume that there are some cameras P1, P2, and coordinates of points in

the scene #Xδ such that Equation 3.37 holds true. Then, for every 4 ˆ 4 real
regular matrix H we can get new camera matrices P 1

1, P 1
2 and new point

coordinates #X 1
δ as

P 1
1 “ P1 H

´1 P 1
2 “ P2 H

´1

«

#X 1
δ

1

ff

“ H
„

#Xδ
1



(3.38)

which also project to the same image points

ζ1 #x1β1 “ P1

„

#Xδ
1



“ P1 H
´1H

„

#Xδ
1



“ P 1
1

«

#X 1
δ

1

ff

(3.39)

ζ2 #x2β2 “ P2

„

#Xδ
1



“ P2 H
´1H

„

#Xδ
1



“ P 1
2

«

#X 1
δ

1

ff

(3.40)

We see that in general we can reconstruct the cameras and the scene
points only up to some unknown transformation of the space. We also see
that the transformation is more general than just changing a basis in R3

where we represent affine points #Xδ. MatrixH acts in the three-dimensional
affine space exactly as homography on two-dimensional affine space.

Let us next look at a somewhat simpler situation when camera calibra-
tion matrices K1, K2 are known. In such a case we can make sure that H
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