To /\43 ; é/;?J)a’(v Cagwofrj

3 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different
view points. We will next investigate how to (re-)construct camera pro-
jection matrices and meaningful coordinates of points in the space such
that the reconstructed cameras and the reconstructed points generate the
images.

3.1 Epipolar geometry

Figure shows two cameras with different centers C;, C, and image
planes 711, 2, observing a general point X as 11, uy. Baseline b connecting

S,go IS cJ’V:( f/.‘(k}of

1D Vf&of\/\CJ'\rbg 0(]"'0'\/\/
b“)( ‘I’V‘!\Mv\ &)#\Iw

X
s\ o [KL u’/\ ‘ULL > Xé & /L'Z
ly N g . —
~ N ( A 3
1 e_F(poQ,uur - ”\ da —
C S Riaes | ; Y - X @m
s 6
Cy €1 b V C, 0_0(2,
n
/ et I'Lu — R
epcpoles =z Imejes V? Cemdes |

Figure 3.1: Epipolar geometry of two cameras.
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X
o X-G X-G T
A
X
N g /
G -G € Cy

Figure 3.2: Vectors of the epipolar geometry.

age centers Cy, C;_ intersects 111, 7y in eEzEOIes e1, €p. Points Cq, C; and
form epipolar plane o, which intersects 1y in epipolar line I; and 7 in
pipolar line l,. Epipolar line I; passes through epipole e; and through
age point u;. Epipolar line I, passes through epipole e, and through
age point 5. > K, K 2 £

et us next find the relatlonshlp etween 1mage pomts, epipoles, epipo-_
lar\lines as a function of cz Cirrwgtam@gg, Figure[3.2| Assume a world
coopdinate system (O, 6) and cameras Cy, C; with camera projection ma-
tricgs

P = [KlRl‘ —K1R1615] and ([P = [Ksz‘ —K2R2626:| (3.1)

Point X is projected to image planes 71, mp, with respective coordinate

systems . (02,B2), as
¥ 1z LR
G115, = P1 [ 16} and (pXpp, = P> [ 16} (3.2)
L
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for some (; > 0 and (> > 0, which then leads to
G #ip, = KiRy (X5 — Cip) and G Top, = KoRo (X — Cyw)  (33)
GR{K W = Xs - Cis Ry K g, = Xs—Cu (34

> 2 > }—()
C1X1p, = Pq [ 15] and (o2, = Pz[ 16]

Consider now that vectors X)(g — 615, )25 — 625 and 625 — 615 form a triangle
——————
and hence

Cos — Crs = (X5 —Cus) — (Xs — Cas) € (3.5)
Co—Cis = GR{K T — QRIK; 'y, (3.6)

with (; > 0 and (, > 0 for the standard choice of jcamera coordinate
systems.

We shall next eliminate depths C;, (o by exploiting|the vector product
identities, see Paragraph([1.3]

0 = Zx2=[F, % (3.7)
0 = 7' @xi)=7 [H.7 (3.8)
for all ¥, i € R3. 32 2 fewmns
We first vector-multiply Equation[B:gby Cps — C1s ffom the left to get
- - > - v
0 = [Cza - Clé] LG R K %, — [CZ(S - Clé] LG R, K, o5, (3.9) €
N
and then multiply Equation[3.9]by {» szﬁsz_ TR, from the leftfto get '
ST -To [2 2 Tp—12 221 fwaw Essemdal pashrix
0 = Cz xzﬁzKZ Ry |:C26 — C]@] y Cl R1 K1 xlﬁl (310) [%/ -+
. . . . . E = R’.’b C{g— C”\ ]x ?\’q
which, since {; # 0 and (; # 0, is equivalent with . ¢
0 = JZ;BZKZ_TR Cos — C]é:l RIK;lfm] (311) -Fbvf\zvol«xW\—U"\‘LoL V"Ve\"I’V“X
0 = X, K "EK '3y (3.12) _ T_
éfiz 29 1 Mpr (-')/6 9\’/[ T = K, EK,
0 = Xy Fiip n (3.13)
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where we introduced the essential matrix E € R3*3 as X
- - BN - -
E—Ry [Cos — Cis| R (3.14) . X-¢G X-&
and the fundamental matrix F € R as I I
> -
- - X X
A d’ ' - F=K, Ry [Cz(s — Clé] R{K; (3.15) ) 7—? 2
X
Let us next introduce ppi olesi to pass from vectors in 0 to vectors in > = = s
. - C1 €1 C2 — Cl €2 Cz
1, p2, which are measurable in images. '
The projection e; of the the camera center C, to the first image as well

as the projection e, of the the camera center C1 to the second image are

obtained as Nl dion _)LJLL/"\» T, 2, 1t E‘H)VO&U% = \«woaes o,g- COMMMNA_
w C1% = P1[%22]=K1R1(§5—516) (3.16) e lons

R
Cis

Ca (4} G e—)Zﬁz = P [ 1 j| = Ksz(é)lé — 625) (3.17) R ?L
C’:z_ > e C — e
for some (; > 0and (; > 0. ! z
We can now substitute Equation[3.I6]into Equation[3.15]to get
Fo— K R [Cos—Cs| RIS (3.18) r2 kR (T-C )
T T Tr—1 o /S SRS S
- K R[GRK ewl] RIK ¥ G 19) * |
K ) 2 -2 ¢
BN = (K 'Rp———— elﬁ (3.20) Ls a¥s
%o F e n
L
- |IE1|K_TR2RTKT [61131 (3.21) {);T .
1 rv"\v A e Covr ) ianedk A - X [J(,
We used the result from[§2} wh *h show's how the Vector product behaves * l }g‘"" I

under the change of a basis.
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Analogically, we substitute Equation|3.17|into Equation to get

Lay, Sl

F Ky "Ro [@?ﬁql (3.22)

K, 'R [—Cz R, K;lazﬁz] RIK (3.23)

N
([Cz R;Kgle*%] . Ry K21> R/K ! (3.24)

C , T
_ - <|K—§|R2TK2T [e2ﬁ2]x) R/K; (3.25)

A S
R

Kl (@, ], KoRoR{ K[ { (3.26)
I
We used additional properties of the linear representation of the vector
product from|[§ 3]
We see from Equationsand B.26lthat it is possible to recover homo-
geneous coordinates of the epipoles from-F by solving equations

1
e msx? cFaﬁl =0 )and e (R (3.27)

for a non-zero multiples of e?llgl, 3252. We also see that matrix F has rank
smaller than three since it has a non-zero null space éj4,. Since, rank of

I

1

- = -
Cos — Ci5| is two for non-zero Cys — Cy5, F has rank two when camera

Ix —
centers do not coincide. rend ( Q’,) -1

Let us look at the epipolar lines. Epipolar lines pass through the
corresponding points in images and the epipoles, i.e. [; = x1 v e; and

Zz)ﬁz x5 v ep. Consider that there holds —_—
>T > = ° e ﬂ > T
[L=X.Vetr #,Fép =0 and # F ey, =0 (3.28)
Xy, F ¥ip = 0 %y Flip =0 (3.29)
(3.30)
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and therefore homogeneous coordinates fl B l_;ﬁz of epipolar lines generated
by %23, and ¥yg,, respectively, are obtained as

l_;gl = FTJ?QI;Z and l_;ﬁz = Fflﬁ] (3.31)

for J?zﬁz #* 6_)252 and 9?1/31 #* €1, -

3.2 Computing epipolar geometry from image

Let us look at how to compute the epipolar geometry between images
from image matches. Our goal is to find matrix(§ = 7F for some real

non-zero T using Equation[3.13] Let us introduce _f i qé W,
11 812 813 }(;r FXe= ©
G=|8xn & 8n| (3:32) vy,

931 832 433
Lov
Uy

and write Equation[3.13]as Q\L 0w h

m [gu 812 gm]

ST -
0 = xszxliﬁ] = [uzi (%] w2i] 821 82 8§23
T 331 832 833 w1
— —— —
7
TF o RULowe
0 = [M2z‘ Ui uzli O1i Ui Wi UjUyy U2i 01 U2i Wi WUy W01 Wi wli]

A
for the i-th pair of the corresponding points ¥y, ¥2i, in the two images.
Notice that we can work even with ideal points when wy; = 0 or wp; = 0.
We can solve this Way for a non-zero multiple of F from eight corre-
spondences in a general position, i.e. not all on a plane or on some special
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quadrics passing through camera centers [11]]. If there is noise in image a L
coordinates, we in general get a rank three matrix. (N 1 CA [ fo ( (‘ ¢ (9\
To avoid this problem, we can use only seve int correspondences to [R: ¢ = G o

compute a two dimensional space of solutlc')F \cnv 7
a
(}A fC ’ocl o (G:Gl—i—a:Gz[ 3} f'+ ‘5(334)

r'd
generated form its basis Gy, G; by a. Then we use the constraint

8111 8112 8113 8211 8212 8213
0=IGl=[6G1+aG|=||81y £12n f1n|+a |82 £220n £2xn
8131 8132 8133 8231 823 8233

to find a by solving a third order polynomial

0 = LZ30( —|—a2a ~|—a1a~|—ao (3.36)
a3 = |G -
a = 8221 8232 8113 — §221 8212 8133 + §211 §222 8133 + 231 112 §223 9
+8231 8212 123 — 211 §223 132 — §231 122 §213 — §231 §222 §113 W/

—8211 8123 8232 + 121 §232 8213 + §221 132 §213 + 131 §212 §223

—8121 8212 8233 — 111 §223 232 — §221 112 §233 + $211 122 §233

+8111 8222 8233 — 131 §222 8213
m = 111 122 8233 + 8111 8222 §133 + $231 §112 123 — 121 112 233

—8211 8123 132 — §221 112 §133 — §231 §122 §113 + $211 §122 §133

+8121 8132 8213 + 121 §232 §113 + §131 212 §123 — $121 §212 §133

—8131 8222 8113 + 8221 132 §113 — §111 §123 §232 — §131 §122 §213

+8131 8112 §223 — 111 §223 §132 A
ap = |G

That will give us up to three rank two matrices G.
Notice that we assumed that G was constructed with a non-zero coeffi-
cient at G;. We therefore also need to check G = G, for a solution.
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3.3 Ambiguity in two-view reconstruction Y = eAgM basan roamsdorn u P

3

The goal of scene reconstruction from its two views is to find camera T [ W Slo

projection matrices Py, Py, and coordinates of points in the scene X5 such - Nv% '&v ° wr > ({

that the points X are projected by cameras Py, P> to observed image points (FOYEN
p 0 pro) y 1 gep 6(« CQ/\/ s ) w0 b TW & f—

3?151,3?252 C/—'—\x ‘\/ J/Lif

C1%g, =Py [ 1‘3} and (X, =P [)ié] (3.37)“ R, t Px,l R =T D .
e R | —
- ql
-
O 1

for some positive real Cy, Co. | R\ =
Assume that there are some cameras Py, P, and coordinates of points in

the scene X such that Equation[3.37]holds true. Then, for every 4 x 4 real g e b J}/ c— L» 2y 4’ e Cen

r%lﬂ&lr%vaﬁixf we can get new camera matrices P;, P; and new point L‘ 2pe _‘L.V v
coordinates X} as ( s J N LY (' X {] [ X 2
S R t P\, —> O

P/ =PH! Pj=PH! )?5 —H [)ﬂ (3.38) . IR\ =1
which also project to the same image points  atee oiy' ww,(,mw—te . O 1 f€ (K S :l v (;\MD" J\ -
Does Aot o\'wwjt)? Am«‘ocqwg‘r 3 5 leme i P /B(H\'\w \IJ‘WV\K F‘L’WA/ l:b L,a(“:v“ J
N B R B e prope Coe )
2 >
Gdy, = Po [%‘5] = P)H H [}ﬂ 24 )ié (3.40) o A D

We see that in general we can reconstruct the cameras and the scene P{, o'\z ¢ }\L{_ WG/FQMW o
v A\

points only up to some unknown transformation of the space. We also see
that the transformation is more general than just changing a basis in R® PT 4 DT

where we represent affine points Xs. Matrix Hacts in the three-dimensional At /
affine space exactly as homography on two‘-dim‘ensional affine space. T A ™
Let us next look at a somewhat simpler situation when camera calibra- F 1 -
tion matrices Kq, K, are known. In such a case we can make sure that H \5 &
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has a special form which corresponds to a special change of a coordinate
system in the three-dimensional affine space.

3.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices K, K, are known.
Hence we can pass from F to E using Equations as

E =K, FK; (3.41)
then recover the relative pose of the cameras, set their coordinate systems
and finally reconstruct points of the scene.

3.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points
X1p,, Xap, using Ky, Ky to “calibrated”

By, =KW, and iy, =K 'y, (3.42)

and then use camera projection matrices as follows

—

X B, X

Cl '7?171 = Pl)/l |: 1 1

Matrix H allows us to choose the global coordinate system of the scene as

(C1,€1). Setting
T -
gl = [lng C111 (3.44)
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we get from Equation[3.38]

Py, — |1/0] (3.45)
Py, = |RR[| ~Ry(Cos — Cus) | = | ReR]| — RoR[ (Cae, — Cic, 1346)
= [r| -rC, | (3.47)

and the corresponding essential matrix
E=R [@1] ) (3.48)

From image measurements, X1,,, ¥2,,, we can compute, Section[3.2] matrix

G—1E=1R [@1] (3.49)

X
and hence we can get E only up to a non-zero multiple 7. Therefore, we

can recover C:l only up to 7.
We will next fix 7 up to its sign s;. Consider that the Frobenius norm of a

matrix G
3
Z G?]. = y/trace (GTG) = \/trace (Tz [ e !
ij=1
\/ 72 trace <[6€1]I [661] X> (3.50)

= |t A/2|C. )2 = |t| V2|Cs | (3.51)

We have used the following identities

IGlr =

A
[
X

)

el

=
—
34,
[

X
N———

T - -
' = |G, R'R G| =2[c] [ ) (3.52)
0 z —y 0 -z y v +z22 —xy  —xz
= |-z 0 «x z 0 —x|=7| —xy 22422 =yz
y —x 0]||-y x 0 —xz  —yz X+
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We can now construct normalized matrix G as

_ C ,
e \?G _Tx [ o ] = siR [ £, | (3.53)
A/ Zi,jzl GZ-2]~ |T| HC€1 H X .

with new unknown s; € {+1, -1} and 1?61 denoting the unit vector in the
direction of the second camera center in €; basis.

We can find vector g, = s f;l with new unknown s, € {+1,—1} by
solving
GUe, =0 subjectto [Ty =1 (3.54)
to get
— 1 N S1 N
G = s1R|—=7T¢| = —=R[0g], (3.55)
S» « S>
sG = R[Uq], (3.56)
[sg1 sg@ sg3] = R[vi v2 wv3] (3.57)

with unknown s € {+1,—1}, unknown rotation R and known matrices
[91 92 g3]=Gand [vi v» wv3]=[0],.

This is a matricial equation. Matrices G, [7, |, are of rank two and hence
do not determine R uniquely unless we use R'R = I and |R| = 1. That
leads to a set of polynomial equations. They can be solved but we will use
the property of vector product, to directly construct regular matrices
that will determine R uniquely for a fixed s.

Consider that for every regular A € R%*3, we have, [§2]

> - > - A_T > -
(Axp) x (Ayp) = Xgr X Ypr = ﬁ (X x ¥p) (3.58)
which for R gives
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Using it fori,j =1,2,3 to get

(sgi) x (sg;)) = (Rv;) x (Rvj) (3.60)
s> (gi x gj)) = R(vixvj) (3.61)
(9i x 9j)) = R(vixvj) (3.62)

i.e. three more vector equations. Notice how s disappeared in the vector
product.
We see that we can write

[s91 S92 sg3 91X g2 92X g3 91X g3 =
=R [v1 Vo V3 V] XVp Vp X V3 V1><V3] (3.63)

There are two solutions R, for s = +1 and R_ for s = —1. We can next
compute two solutions t;¢, = +0, and f_, = —7, and combine them
together to four possible solutions

Paper = Ry|T| —Fig | (3.64)
Pryio = Ry :1| —F,el: (3.65)
Py, = R_ :I\ —tlel: (3.66)
Py, = R[T| ] (3.67)

The above four camera projection matrices are compatible with G. The one
which corresponds to the actual matrix can be selected by requiring that all
reconstructed points lie in front of the cameras, i.e. that the reconstructed
points are all positive multiples of vectors Xj¢, and %3, for all image points.
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3.4.2 Point computation

Let us assume having camera projection matrices P, P, and image points
X1p,, Xap, such that

- }Z) - >_<)
C1 X1p, = P1 [ 16} and (; Xop, = P2 [ 16} (3.68)

We can get X5, and 1, G by solving the following system of (inhomoge-
neous) linear equations

R G

e N = (3.69)
0 xp, —P2| |Xs
1

3.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fun-
damental matrix from seven point correspondences and only then used
camera calibration matrices to recover a multiple of the essential matrix.
Here we will use the camera calibration right from the beginning to obtain
a multiple of the essential matrix directly from only five image correspon-
dences. Not only that five is smaller than seven but using the calibration
right from the beginning permits all points of the scene generating the
correspondences to lie in a plane.

We start from Equation [3.42] to get &,, and i), from Equation [3.43
which are related by

— —-T —1-
xZTﬁZK2 EK, 'Y, = 0 (3.70)

fgyzEfm -0 (3.71)

The above equation holds true for all pairs of image points (flyl, 3?2),2) that
are in correspondence, i.e. are projections of the same point of the scene.
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3.5.1 Constraints on E

Matrix E has rank two, and therefore there holds
|E| =0 (3.72)
true.
We will now derive additional constraints on E. Let us consider that we

can write, Equation[3.48]

E = R [661] ) (3.73)

Let us introduce (il = [x y Z]T and evaluate

- T N > 17T N s 1T s
iTE <R [Cel]x> R[C.| =[c.] rR[C.] =[c.] [Cu] @7
= -z 0 x z 0 —x|=| —xy 2Z2+x* -—yz
y —x 0 -y x 0 —xz —yz Pt
[ + y? + 22 XX xy xz
B 2ty 2 —|*y yy yz
L X2+ y? 4 2 Xz yz zz
= G -G 675)

We can multiply the above expression by E from the left again to get an
interesting equation

- - - 1
EE'E = E (Hceluzx -G, éTl) = |Co|’E = Strace (E'E)E (376)
or equivalently

2EE'E = trace (E'E)E (3.77)
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which provides nine equations on elements of E.
In fact, these equations also imply |E| = 0. Consider that Equation
implies
(2EE" —trace (E'E)I) E=0 (3.78)
For Equation[3.78]to hold true, either E can’t have the full rank, i.e. [E| = 0,
or 2EE" — trace (E"E) I = 0. The latter case gives

0 = trace(2EE' — trace (E'E)I) = 2trace (EE') — 3trace (E' £3.79)

Let us check the relationship between trace (E'E) and trace (EE") now.
We write

trace (E'E) = (Ef, + E5 +E3)) + (Ef, + B3, + E3) + (Efy + B3y + E3y)
= (Efy + E}, + Efy) + (B3 + B3, + E3y) + (B + E3, + E3;)
— trace (EE") (3.80)
Substituting the above into Equation[3.79]gets us
0 = 2trace(EE") —3trace (E'E) = —trace (E'E) (3.81)
Equation 2EE" — trace (ETE) I = 0 also implies
2EE" = trace(E'E)I (3.82)
|2EE"| = |trace (E'E)I| (3.83)
2%|E> = (trace (E'E))® (3.84)
2E” = 0 (3.85)
El = 0 (3.86)

Therefore, Equation implies |E| = 0.
Let us now look at constraints on matrix G = 7 E, for some non-zero real
7. We can multiply Equation[3.78]by 7 to get

7 (2EE" —trace (E'E)I) E 0 (3.87)
(2(TE) (tE") —trace (TE") (TE))I) (TE) 0 (3.88)

(266" —trace(6'G)I) G = © (3.89)
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Clearly, rank (G) = rank (T E) = rank (E) = 2.
We conclude that constraints on E and G are the same.

3.5.2 Geometrical interpretation of Equation [3.77]

c
y
Cx (Cx (Cx1) C—)X(C»Xy_))
éxg’

-

Figure 3.3: Identity Ce, x (Ce, x (Ce, x 7)) = —|Ce, |2(Ce, x 7).

Let us provide a geometrical interpretation of Equation We will
mutiply both sides of Equation by a vector i/ € R® and write

2EE'EY = trace(E'E)E¥/ (3.90)
- 5> 17 r= 5 - - N

2R|C., | ) [y ) [y 7= 201G PR Ca| EACEN

afe ][5 - ey e

|:C€1:| y [Cel] o [C€1] o g = _||C€1H2 |:C€1:| o g (3.93)

Now, we use that for every two vectors %, i € R? there holds [¥],, 7 = ¥ x §
true to get

Ce % (Cor x (Cey x D) = —lCail(Cer x ) (3.94)

which is a familiar identity of the vector pruduct in R?, Figure
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3.5.3 Characterization of E

Let us next see that a non-zero 3 x 3 real matrix satisfying Equation [3.77]
has rank two and can be written in the form of Equation for some
rotation R and some vector Ce,.

Consider a real 3 x 3 matrix E such that Equation [3.77] holds true. We
will make here use of the SVD decomposition |2} p. 411] of real matrices.

We can write
a

E=U b v’ (3.95)
C

for some real non-negative a, b, c and some orthogonal real 3 x 3 matrices
U,V,suchthatUTU=I,andVv'v=1[2] p- 411]. One can see that u'u=1,
and V' V = I implies U] = £1,|V| = +1.

Using Equation[3.95|we get

2 2

EE' =U b? u', ETE=V b? v’ (3.96)
2

c c?

and trace (E'E) = trace (VD?V') = trace (VD?V~1) = trace (D?) since matri-
ces D? and EE' are similar and hence their traces, which are the sums of
their eigenvalues, are equal. Now, we can rewrite Equation[3.77]as

a2 [ i

2U v? Ul — @+ +A)1|U b vl = (8.97)
2
c

2U v Vi @+ +A)U b vl = (8.98)
3
c
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Matrices U, V are regular and thus we get

a3 a
2 v — (@ + 1+ A2 b -0 (3.99)
3 c

which finally leads to the following three equations

@ —abt? —act=a@-v*-c*) = 0 (3.100)
P —ba®>—bt=b(t*—-c*—a*) = 0 (3.101)
S —ca®—chP=c(®—a*—b) = 0 (3.102)

We see that there are the following two exclusive cases:

1. If any two of a,b,c are zero, then the third one is zero too. For
instance, if a = b = 0, then Equation[3.102]gives ¢® = 0. This can’t
happen for a non-zero E.

2. If any two of a,b, ¢ are non-zero, then the two non-zero are equal
and the third is zero. For instance, if 2 # 0 and b # 0, then Equa-

tions[3.100}[3.101]imply ¢ = 0 and thus a?> = b?, which givesa = b

since a, b are non-negative, i.e. rank (E) = 2.

We thus conclude that E can be written as

[a 01 0][0 —a 0
E = U a vi=ul|l-100||a 00|Vl (3.103)
i 0 001[]0 00

| © T T 0 T (vhH~T 0
_— (; AN VVS vzwmvg(.ozl)

= (sign (w)))*wv’ sign(|VT|) [avs], (3.105)
= sign ([W])Wv' sign ([V"|) [sign (|W])avs], (3.106)
= R|[sign(|U])avs], (3.107)
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for some non-negative a and the third column v3 of V. Parameter a is
zero for E = 0 and positive for rank two matrices E. We introduced a
new matrix W in Equation|3.104} which is the product of U and a rotation
round the z axis. We also used V'V = I, and finally Equation In
Equation[3.105|we used (sign (|W]))?> = 1,V-T = Vfor VIV = I. MatrixR =
sign (|(W)|) WV sign (|VT|) in Equation[3.107lis a rotation since sign (|(if)|) W
as well as V' sign (|V'|) are both rotations. Finally, we see that sign (|ii]) =
sign ([U]).

3.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from
image matches.

3.5.4.1 Selecting equations

Every pair of image matches (¥,,,%2,,) provides a linear constratint on
elements of E in the form of Equation[3.71] and matricial Equation
gives nine polynomial constraints for elements of E.

We have already seen in Paragraph [3.2] that a non-zero multiple of E
can be obtained from seven absolutely accurate point correspondences
using the constraint |E| = 0. The solution was obtained by solving a set of
polynomial equations out of which seven were linear and the eighth one
was a third order polynomial.

Let us now see how to exploit Equation [3.77]in order to compute a
non-zero multiple of E from as few image matches as possible.

An idea might be to use Equations [3.77] instead of [E| = 0. It would
be motivated by the fact that Equations [3.77]imply equation |E| = 0 for
real 3 x 3 matrices E. Unfortunately, this implication does not hold true
when we allow complex numbers in K7, which we have to do if we want to

1Equation |E| = 0 can’t be generated from Equations[3.77]as their algebraic combination,
ie. |[E| = 0 is not in the ideal [12] generated by Equations It means that there
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obtain E as a solution to a polynomial system without using any additional
constraints. We have to therefore use |E| = 0 as well.

The next question is whether we have to use all nine Equations It
can be shown similarly as above that indeed none of the equations[3.77]is
in the ideal [12] generated by the otherd?] Therefore, we have to use all

might be some matrices E satisfying Equations B.ZZlwhich do not satisfy |E| = 0. We
know that such matrices can’t be real. The proof of the above claim can be obtained
by the following program in Maple [13]

>with(LinearAlgebra):
>with(Groebner):
>E:=jjell—el2—el3;,je21—e22—e23; ,je31—e32—e33;,:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>v:=indets(eq):
>mo:=tdeg(op(v)):
>G:=Basis(eq,mo):
>Reduce(Determinant(E),G,mo);
ell e22 e33 - ell e23 €32 + e21 e32 €13 - e21 e12 €33 + e31 e12 €23 - e31 e22 €13
which computes the Groebner basis G of the ideal generated by Equations|3.77|and
verifies that the remainder on division of |E| by G is non-zero [12].
2To show that none of the equations[3.77lis in the ideal generated by the others, we run
the following test in Maple.
>with(LinearAlgebra):
>with(Groebner):
>E:=jjell—el2—el3;,je21—e22—e23;,je31—e32—e33;;:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>
>ReduceEqByEqn:=proc(eq,eqn)
local mo,G;
mo:=tdeg(op(indets(eqn)));
G:=Basis(eqn,mo);
Reduce(eq,G,mo);
end proc:
>
>forifrom 1 to 9 do
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Equationsas wellas |E| = 0. Hence we have altogether ten polynomial
equations of order higher than one.

We have more equations than unknowns but they still do not fully
determine E. We have to add some more equations from image matches.
To see how many equations we have to add, we evaluate the Hilbert
dimension [12] of the ideal generated by Equations[3.77]and [E| = 0. We
know [12] that a system of polynomial equations has a finite number of
solutions if and only if the Hilbert dimension of the ideal generated by the
system is zero.

The Hilbert dimension of the ideal generated by Equations[3.77]and |E| =
0 is equal to siX]. An extra linear equation reduces the Hilbert dimension

ReduceEqByEqn(eq[i],eq[[op({$1..9} minus {i})]]);
end;

€113 4e11e122 +-e11 132 4-e11 212 4221 €12 22+ 2621 €13 €23+ e11 €312 4231 1232 +2 31 €13 €33 —el1 €222 —e11 0322 —
11232 — e11¢33?

€112 €21 +2¢11e1222+2 11 €13 €23 + 213 +¢21 ¢22% +¢21 €232 + €21 ¢312 +2 31 ¢22 €32 4 2 £31 €23 ¢33 — ¢21 €122 — 21 ¢322 —
€21¢13% — e21¢33?

€112 31+ 2¢11e1232+2¢11 €13 ¢33 +¢212 ¢31 +2 21 €22 €32 +2 €21 23 ¢33 + 313 + 31 €322 + €31 ¢332 — ¢31 €122 — 31 0222 —
31132 — ¢31¢232

€12e112 4123 +e12¢13% 4222611 €21 4126222 +2¢22 ¢13 234232 11 e31 +¢12 322 4232 €13 ¢33 —¢12 €212 — 120312 —
12232 — ¢12¢332

2¢12¢11 621 4€122 €22 +2 €12 13 €23 4 ¢22 €212 + 6223 422 €232 +2 032 €21 €31 +¢22 €322 +2 ¢32 23 €33 — €22 112 — 22 €312 —
€22¢13% — 226332

2¢e12¢e11e31 4122 e32+2¢12¢13 €33 +2 €22 €21 €31 + €222 €32 4222 23 33 4 €32 €312 + 323 €32 €332 — 32112 — 32212 —
326132 — 326232

e13e112 + 13 ¢122 +¢13% + 223 ¢11 €21 422312622 + 13232 4233 11 ¢31 +2¢33 ¢12 €32 + €13 ¢332 — ¢13 212 —¢13¢312 —
13222 — ¢13¢322

2¢13¢11e21+2¢13 1222+ €132 ¢23 + 623 €212 423 222 +¢23% +2 33 ¢21 €31 42 £33 €22 032 +¢23 €332 — 23 ¢112 — 23312 —
€23¢122 — 23322
2¢13¢11e31 4261312632 + €132 ¢33 4223 €21 e31 42 €23 €22 32 + 232 €33 + ¢33 €312 + 33 0322 4 33° — 33 ¢112 — 33 €212 —
33122 — 33222

3The Hilber Dimension of the ideal is computed in Maple as follows
>with(LinearAlgebra):
>E:=jjell—el2—el3;,je21—e22—e23;,je31—e32—e33:;:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM, Vector),list)):
>with(Polynomialldeals):
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by one [12]. Hence, five additional (independent) linear equations from
image matches will reduce the Hilbert dimension of the system to one.

Since all equations B.7Z]and |E| = 0 are homogeneous, we can’t
reduce the Hibert dimension below one by adding more equations 3.77
from image matches. This reflects the fact that E is fixed by image mea-
surements only up to a non-zero scale.

To conclude, five independent linear equations[3.71]plus Equations[3.77]
and |E| = 0 fix E up to a non-zero scale.

The scale of E has to be fixed in a different way. For instance, one often
knows that some of the elements of E can be set to one. By doing so, an
extra independent linear equation is obtained and the Hilbert dimension
is reduced to zero. Alternatively, one can ask for |E|?> = 1, which adds a
second order equation. That also reduces the Hilbert dimension to zero
but doubles the number of solutions for E.

3.5.4.2 Solving the equations

We will next describe one way how to solve equations

f’;yzEa?i,lyl =0, (2EE" —trace(E'E)I)E=0, [E/=0, i=1,...,5
(3.108)
We will present a solution based on [14], which is somewhat less efficient
than [15}/16] but requires only eigenvalue computation.

>HilbertDimension(jop(eq),Determinant(E); );
6
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First, using Equation[1.90] from Paragraph[L.5] we can write
[ 2T ST ]

X ® x1,2y2 - A
l
2,1 Y2y,

T

X
Y | oE) = (3.109)
4,2)/2
=T

51, % X529,
ti’T |+

_ o OO oo

to obtain a 6 x 9 matrix of a system of linear equations on v(E). Row &'
can be chosen randomly to fix the scale of v(E). There is only a negligible
chance that it will be chosen in the orthogonal complement of the span of
the solutions to force the solutions be trivial. If so, it can be detected and
anew 7' generated.

Assuming that the rows of the matrix of the system are linearly in-
dependent, we obtain a 3-dimensional affine space of solutions. After
rearranging the particular solution, resp. the basis of the solution of the
associated homogeneous system, back to 3 x 3 matrices Gy, resp. G1, Gy, Gz,
we will get all solutions compatible with Equation[3.109]in the form

G=Gy+xG +yG +2zG3 (3.110)

forx,y,ze R.

Now, we can substitute G for E into the two remaining equations in|3.108
We get ten trird-order polynomial equations in three unknowns and with
20 monomials. We can write it as

Mm=20 (3.111)
where M is a constant 10 x 20 matri and
m = [x3, yxz, ny, ya, z2x%,2 yx,z yZ, 22x, zzy, 23, %2, yx, yz, zZx,2Y, 22, x, v,z,1]

(3.112)

#Matrix M can be obtained by the following Maple [13] program
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is a vector of 20 monomials.
Next, we rewrite the system|3.112]as

(223 +22C +2C1 +C)c = 0 (3.113)
with
C = 2°C3+72°C+zC + G (3.114)

containing 10 monomials. Matrices Cy, ..., C4 are constant 10 x 10 matrices

Co = [m m my my my mp mz my mg my| (3.115)
GG = [0 0 0 0 m mg my my ms mo| (3.116)
G = [060 0 0 0 0 0 m m my (3.117)
GG = [060 0600 00 0 0 my] (3.118)

where m; are columns of M.
Since m contains all monomials in x,y,z up to degree three, we could
have written similar equations as Equation|3.113|with x and y.

>with(LinearAlgebra):
>G0:=jig011—g012—g013;,ig021—g022—g023;,ig031—g032—g033,; :
>Gl:=jigl11—g112—g113;,ig121—g122—g123; ,ig131—g132—g133,,;:
>G2:=jg211—g212—g213,,jg221—g222—g223;,ig231—g232—g233;:
>G3:=4ig311—g312—g313;,ig321—g322—g323;,ig331—g332—g333,;:
>tre:=E-;simplify((2*E. Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert(trc(G) listlist)), Determinant(G)]:
>mo:=tdeg(x,y,z);
>m:=PolyVarMonomials(eq,mo);

mi= [x3,yx2,y2x, y3,zx2,zyx,zyz,zzx,zzy,z3,x2, yx, yz,zx,zy,zz,x, ¥,2,1]
>M:=PolyCoeffMatrix(eq,m,mo):
>M[1,1];

291229112 g121+2 g133 g113 g131 — g1232 g111 — g1222 g111+2 g132 g112 g131 — g132% g111 + g131% g111 + g1122 g111 +
1113 +2¢123 ¢113 g121 — ¢1332 g111 + ¢1212 g111 + ¢1132 g111
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Equation[3.113]is known as a Polynomial Eigenvealue Problem (PEP) [17]
of degree three. The strandard solution to such a problem is to relax it into
a generelized eigenvalue problem of a larger size as follows.

We can write z2c = z (zc) and zc = z (c) altogether with Equation[3.113
in a matrix form as

0 I 0 C I 0 0 C
0 0 I zC =z |0 I O zc (3.119)

—C ¢ —G z2c 0 0 G z2c
Av = 2zBv (3.120)

This is a Generelized Eigenvalue Problem (GEP) [17] of size 30 x 30, which
can be solved for z and v. Values of x,y can be recovered from v as
x = cg/cip and x = cg/cyp. It provides 30 solutions in general.

When () is regular, we can pass to a standard eigenvalue problem for a
non-zero z by inverting A and using w = 1/z

—¢;'la ¢l —¢'c | [wie w?c
I 0 0 wc = w | wc (3.121)
0 I 0 C C
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