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Let us now consider point

T = (@ x ) x (E < Bp) (8.42)
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8.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed
as combinations of joins and meets indeed behave under a homography as
homogeneous coordinates constructed from affine coordinates of points.

Secondly, when the homography is a rotation and homogeneous coor-
dinates are unit vecors, all A’s become equal to one, the determinant of His
oneand H™ " = H. Therefore, all homogeneous coordinates in the previous
formulas become related just by H.

8.4 Vanishing points

When modeling perspective projection in the affine space with affine pro-
jection planes, we meet somewhat unpleasant situations. For instance,

Qves = A WQ/Y"“"} Zf@

imagine a projection of two parallel lines K, L, which are in a plane 7 in —_—
the space into the projection plane 7 through the center C, Figure[8.10] u-/(/’ q %3
The lines K, L project to image lines k,I. As we go with two points X, Y = N0 3 %((w&
along the lines k,I away from the projection plane, their images x, y get -
closer and closer to the point v in the image but they do not reach point v. X o &T 2 = 0
We shall call this point of convergence of lines K, L the vanishing poinﬂ —- =S - 7 Z’
TTTax 7L = /Q = P a X = Z X
Ub&znik in Czech. \
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Cﬁ Vo sM v&i"«"‘g

K X

Figure 8.10: Vanishing point v is the point towards projections x an y tend
as X and Y move away from 7t but which they never reach.

8.5 Vanishing line and horizon

If we take all sets of parallel lines in 7, each set with a different direction,
then all the points of convergence in the image will fill a complete line /.

The line h is called the vanishing line or the horizond when 7 is the ground
plane.

Now, imagine that we project all points from 7 to 7 using the affine
geometrical projection model. Then, no point from 7 will project to h.
Similarly, when projecting in the opposite direction, i.e. 7 to 7, line / has
no image, i.e. it does not project anywhere to 7.

8Horizont in Czech
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Figure 8.11: Vanishing line (horizon) / is the line of vanishing points.
- e Ny - e

When using the affine geometrical projection model with the real pro-
jective plane to model the perspective projection (which is equivalent to
the algebraic model in IR®), all points of the projective plane 7 (obtained
as the projective completion of the affine plane 7) will have exactly one
image in the projective plane 7 (obtained as the projective completion

of the affine plane 7) and vice versa. This total symmetry is useful and
beautiful.
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9 Projective space

9.1 Motivation — the union of ideal points of all
affine planes

Figure [9.1[a) shows a perspective image of three sets of parallel lines
generated by sides of a cube in the three-dimensional real affine space.
The images of the three sets of parallel lines converge to vanishing points
V1, V2 and V3. The cube has six faces. Each face generates two pairs
of parallel lines and hence two vanishing points. Each face generates an
affine plane which can be extended into a projective plane by adding the
line of ideal points of that plane. The projection of the three ideal lines are
vanishing lines 1o = V1 v V, I)3 = V, v V3 and I31 = V3 v V1. Imagine
now all possible affine planes of the three-dimensional affine space and
their corresponding ideal points. Let us take the union V of the sets of
ideal points of all such planes. There is exactly one ideal point for every
set of parallel lines in V, i.e. there is a one-to-one correspondence between
elements of V (ideal points) and directions in the three-dimensional affine
space. Notice also that every plane 7 generates one ideal line I, of its
ideal points and that all other planes parallel with 7t generate the same I,
Figure[9.1]

It suggests itself to extend the three-dimensional affine space by adding
the set V to it, analogically to how we have extended the affine plane. In
this new space, all parallel lines will intersect. We will call this space the
three-dimensional real projective space and denote it IP3. Let us develop an
algebraic model of IP%. It is practical to require this model to encompass
the model of the real projective plane. The real projective plane is modeled

2
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Figure 9.1: (a) A perspective image of a cube generates three vanishing
points V1, V2 and V3 and hence also three vanishing lines /1,
I3 and I31. (b) Every plane adds one line of ideal points to the
three-dimensional affine space. Every ideal point corresponds
to one direction, i.e. to a set of parallel lines. Each ideal line
corresponds to a set of parallel planes.

algebraically by subspaces of R3. Let us observe that subspaces of R* will
be a convenient algebraic model of IP3.

We start with the three-dimensional real affine space A® and fix a co-
ordinate system (O, 6) with 6 = (dq,d_;, d;) An affine plane 7t is a set of
points of A3 represented in (O, §) by the set of vectors

n={[xyz lax+by+cz+d=0,abcdeR, a®+b* +c*#0} (9.1)

We see that the point of 7 represented by vector [x,y,z]" can also be
represented by one-dimensional subspace {A [x,y,z,1]"| A € R} of R* and
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hence 7 can be seen as the set

n={{Axvyz 1]T| AeR}[a,b,c,d][x,y,z, 1]T =0,a,b,c,de R, a*+b*+c* # 0}

(9.2)
of one-dimensional subspaces of R*.

Notice that we did not require A # 0 in the above definition. This is
because we establish the correspondence between a vector [x, y, z] and the
corresponding complete one-dimensional subspace {A [x,y,z,1]7, A € R}
of R* and since every linear space contains zero vector, we admit zero A.

Every [x,y,z]" € R? represents in (O, ) a point of A3 and hence the
subset

A’ ={{Alx,y,21]"|A e R} |x,y,z€ R} (9.3)

of one-dimensional subspaces of R* represents A3.
We observe that we have not used all one-dimensional subspaces of R*
to represent A3. The subset

T = {{A [%,1,2,0]"|A e R} |x,y,ze R, ¥* + % + 2% # 0} (9.4)

of one-dimensional subspaces of R* is in one-to-one correspondence with
all non-zero vectors of R, i.e. in one-to-one correspondence with the set
of directions in A3. This is the set of ideal points which we add to A3 to
get the three-dimensional real projective space

P = {{A [x,y,z,w]TM eR}|xy,z,weR, X%+ y2 + 22 + w? # 0} (9.5)

which is the set of all one-dimensional subspaces of R*. Notice that
IP3 = A?) U noo.

§1 Points Every non-zero vector of R* generates a one-dimensional
subspace and thus represents a point of P3. The zero vector [0,0,0, 0]T
does not represent any point.

(e ¢ o)

ax 4/(9,+ca- + olw= O

O
W
P
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§2 Planes Affine planes 73, Equation[9.2] are in one-to-one correspon-
dence to the subset

mas = (A [a,bc,d]T|AeR} |a,be,de R, ®+ 2 +2 %0}  (9.6) X

w ks
of the set of one-dimensional subspaces of R*. There is only one one- oL |V = \3 2
dimensional subspace of R*, {1[0,0,0,1]T| A € R} missing in 7ps. It is o t

exactly the one-dimensional subspace corresponding to the set 77, of ideal -3 9 8
points of P° c lﬁ?\ s 09 'S \% é
e

Tl = {{A[x, y,z,w]T| AeR}|xyz,weR, xz+y2+z2 #0,[0,0,0,1][x, v,z w]T =0} \JLW""" $(W
(9.7)
We can take another view upon planes and observe that affine planes are
in one-to-one correspondence with the three-dimensional subspaces of X K E
3 K(91T€
o))

R*. The set 7, also corresponds to a three-dimensional subspace of R*. T
oo

Hence 7, can be considered another plane, the ideal plane of P3.
The set of planes of IP?> can be hence represented by the set of one-

2
dimensional subspaces of R* /Wo&‘ ML X ‘ a |
nps = {{A[a,b,c,d]"|A e R} |a,b,c,de R, a® + b* + 2 +d*> #0} (9.8) -0

but can also be viewed as the set of three-dimensional subspaces of R*.

We see that there is a duality between points and planes of IP°. They both
are represented by one-dimensional subspaces of R* and we see that point
X represented by vector X = [x,y,x,w]" isincident to plane 7 represented
by vector 7% = [a,b,¢,d] ", i.e. X o T, when

7A'X=[a b c d] =ax+by+cz+dw=0 (9.9)

SIS SEE

§3 Lines Lines in IP? are represented by two-dimensional subspaces of
R*. Unlike in IP?, lines are not dual to points.

5
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10 Camera auto-calibration
Y Ldaificld atto-tanibraton

Actually, it is enough to know matrix!
w=K Tk

to measure the angle between the rays corfesponding to image points X,
3?2‘5 as

=
2T v—Tr—132 2T =2
X, KT 'K™*Xy X, , W Xo
R 18 p 18 p
£(X1,X) = = 10.1
R TS N eyl B
1B 2p xlﬁ () xlﬁ x2ﬁ w .’Xzﬁ

Knowing w is however (almost) equivalent to knowing K since K can be
recovered from w up to two signs as follows.

§1 Recovering K from w Let us give a procedure for recovering K from

@. Assuming
ki1 ki kis
K = | 0 ko (10.2)

ka3
0 0 ()

In [13], w is called the image of the absolute conic.
2
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we get (g
~"\ -1
1 1 ki knks—kizkn w — _
ki1 ki ki3 kv kika ki1 kaa mi1 My Mi3 \( K
S 0 ko kn = 0 1 ke = 0 Moy MmMp3 - (
0 0 1 e 5 0 <
0 0 1 Lo = ~
for some real mq1, m12, M3, Moo andL%. Equivalently, we get ]\ /‘\ wﬂw\/‘—
~J
1 _—mp Mg Mipz—igg iy Kt
my o mipmp 111 Mz a3 o\).g 2
— 1 —ma3
K= 0 Moy Mo 23 <
0 0 1 (LO ' i

Introducing the following notation

w11 @12 W13

w=K K= w12 ®» W3
- w13 W23 W33
yields T
() o=
w12) W13 miy1 mi3
w12 Wy w3 | = | mimp my, +my, Mg + mp s | Qe
w13 W3 W33 miimy3 Mg My My My, + iy + 1 = aTM

(10.6)
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which can be solved for K~! up to the sign of the rows of K~! as follows.
Equation provides equations

-
w11 = m% = M1 = 51 /W11 (o K
w2 =mpmp = mp = wp/(s1 Vo) = s1wn/Von X
w3 =mymz = Mz = w13/(s1 Von) = 51013/ Vou Chie foct ohwwv-og"d”"‘-
W = m%z + m%z = My = S2 A/W» — m%z =52 A/W — w%z/a)n

U

Wa3 = M1 M3 + Moz M3 Moy = 82 (W23 — W2 W13/w11)/ A/ W22 — Wi, /w11

2 2
= 52 (w11 W23 — W12 W13)/ \/0)116022 — W11 W,

which can be solved for m;; with s; = £1and s; = +1. Hence

1 /w11 $1 w12/ /11 5113/ /@11 s < o A
P =
K = 0 52 4w — @i /w8y (W3 — Wi wiz/W11)/ 4/ W2 — W3, /w1 172
0 0 1
—-ms e 0 (Y
Signs s1, sp are determined by the choice of the image coordinate system. K - R .
The standard choice is s; = s, = 1, which corresponds to ki3 > 0 and % o 1

kzz > 0.
Notice that /w17 is never zero for a real camera since m;; = é # 0.
There also holds true

2 _ 2 _ .2 _
\/“)22 wlz/“’ll_\/mn myp =

1 k%Z 1 /1.2 2
E_kZ k2 - k11k22 k22_k127$0

11722
(10.8)
since |ki2| is much smaller than |ky;| for all real cameras.

4
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10.1 Constraints on w

Matrix w is a 3 x 3 symmetric matrix and by this it has only six independent
elements w11, w12, W13, W2, W23 and wsz. Let us next investigate additional 5 I3
constratints on w, which follow from different choices of K. AsS

§1 Constraints on w for a general K [Even a general K yields a con- l/
faint on w. Equation e x parameters of w to only five [

parameters 111, M1, M3, M2 and mp3 and hence the six parameters of w A Cows \4
can’t be independent. Indeed, let us see that the following identity holds o
true oW

2 wZ 0)2 0)2 0)2 0)2 a)Z a)Z

—2 — (wn — w—u)(w%— w—B — 1)) —4 =52 (0n — —2) (w33 — w—la -1
wy, 11 11 Wy, 11 L, ( ':% 0

= | (muamz + magmas)® — (rmaams)? (mamaz)?

3
my

2
(mllmlz)z (”11177113)2
—(m3y + miyy — ————)(miy + myy + 1 — ———— —1)

2 4
my My
(771117”13)2(77111Tf112)2 (7111177112)2 (m11m13)2
4 " (m3, + m3, — — )(miy +myy +1— — 1
my my my

2
= ((m12m13 + m22m23)2 - (Tf11277113)2 - (m22m23)2) -4 (m12m13)2(m22m23)2
(2 (m1pmiz) (mamas))* — 4 (miamaz)? (maamas)?

-0 (10.9)

Since w11 # 0, we get the following equivalent identity

—

2 2 2 o2 ) 2 2 © ML”’“\”& e I
(w3 — Wiz Wy, — (Vw22 — @],) (V11Wss — W3 — @11))
) =0/ (10.10)

2 2 2 2
— 4w, wi, (Wnwn — ©},) (V11w — W5 — W11

which is a polynomial equation of degree eight in elements of w.

5
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We shall see next that it makes sense to introduce a new matrix [N ér 9] &m \-—;j\n cAvea_ K
1 1 w2 @13
012 01 w1 @11
X W wp W3 Lo / e 1|
Q= (012 02 03| =3, on on (10.11)
013 023 033 @13 @3 W33
@11 @11 w11
which contains only five unknowns, and use Equation[I0.10] to get the (%) ; EZ_ £ = 1
positive w11 from Q by solving the following quadratic equation A
a» C()%1 +aiwi; +ap=0 (10.12) j__
( 2 = (ON)
with e,
1y = —40x%013%012% + 023" — 2023202 033 + 201320127022 033(10.13)

—202%033013 + 012%033% + 20237022 0137 + 2023°012°033
+027 013* + 0220337 — 2022 0330127

a1 = 2013%0127 022 + 2023202 — 202 033 — 2012* 033 (10.14)
+4.09 033012 — 20237012 + 2 022%0157

ag = —20» 0122 + 0222 + 0124 (10.15)

SW r*DUL?

§2 Constraints on w for K from square pixels Cameras have often —

square pixels, i.e. Hglﬂ = \1:77_“ =1and 4(51,1;2) = 1/2, which implies, (&>
Equations|6.13] a simplified -
by @ b L
K= 0 ki1 kos _ (10.16)
0 0 1 2
to-¥~ ¥

This gives also simpler

X
1 — k3 (10.17)

1
w = kT
T | ks ks K+ K+ K
6
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We see that we get the following three identities

wp = 0 (10.18)
wp—w;y = 0 (10.19)
“’%3 + Wy —wnwp +wn = 0 (10.20)

We also get simpler

1 0 013 1 0 *k13
Q=0 1 op|=Kw=| 0 1 ~kos (10.21)
013 023 033 —kiz  —ko3 k%l + k%3 + k%:))

and use Equation(10.21]to get

kfl = 033 — o%3 — 053 (10.22)
kiz = —o13 (10.23)
k23 = —023 (1024)

U

0.2 Camera calibration from angles between
ojection rays

We will now show how to calibrate a camera by finding the matrix
w = KK

In general, matrix w is constrained by knowing angles contained be-
tween pairs of projection rays. Consider two projection rays with direc-
tion vectors X}, ¥. Then the angle between them is related to w and Q
by
f]—ﬁ Q 3?2[3

ST >
0 2y T1p Y2 _
cos Z(x1,Xp) = (10.25)

ST - >T - - >T - vdB -
_ xusa)xlﬁ xzﬁa)xzﬁ \/xlﬁfzxm xZﬁszﬁ L

7
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K>

\

(a)

Figure 10.1: (a) Parallel lines K, L are projected to lines k, [ with vanishing

point represented by 7. Vector 7 is parallel to k, . (b) Vectors ?e W oA O(J-a 2

U1, U» contain the same angle as pairs of lines Ky, K3 or Ly, L.

Squaring the above and clearing the denominators gives
q , & ) 8 n g_ co ‘ Q

(COS L(f], J?z))z (J?]}_; Q 32)1‘5) (f;—ﬁ Q 3?2‘3) = (J?Iﬁ Q J?zﬁ)z (1026)
which is a second order equation in elements of . To find , which has five : g &
independent parameters for a general K, we need to be able to establish o~ 9/"/“"'“"""( ey
five pairs of rays with known angles and solve a system of five quadratic
equations[10.26 above. —;7— o -

&) Xon

camera has square pixels. Then, we can use constraints from[§ 2Jto recover
@ and K from three pairs of rays containing known angles. That amounts I
to solving three second order equations|10.26/in 013, 023, 033.
However, this is actually exactly the same problem as we have already -
solved in Section[6.3] Figure[I0.2lshows animage plane  with a coordinate v ) =2
/ . / 2 P2, . . . O - )(4 ;('2
system (0,6) with 6" = (b1, by, b;) derived from the image coordinate e 72

8 Lrsan MAX/J’

§1 Camera with square pixels A simpler situation arises when the N -
P 7ar W{FaQz)
5% %
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C

Figure 10.2: Images of three points with known angles between their rays
can be used to calibrate cameras with square pixels. The
position of image center Cs can be computed in the ortogo-
nal coordinate system (o, 6’) using the absolute pose problem
from Chapter[6.3] Matrix K is composed from coordinates of

Cs:.
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system (0, ). Having square pixels, vectors 51, l;z can be complemented

with l;é to form an orthogonal coordinates system (O = 0,0’). Next,
we choose the global orthonormal coordinate system, (O = 0,6), 6 =

(d1,da,d3), such that

1

-

" /
dy = Zil, d}:@, and ds = 113 (10.27)
[ ] |11 ] |11 ]
and hence R
baff 0 0
=1 0 (bl 0 |% (10-28)
0 0 [l

We know angles / (¥, %), £ (x5, %3) and Z(¥5,%1). We also know image
points i1, = X5, thy = Xosr, e = Xas and thus we can compute
distances d12 = H)_()Zb/ —)?15/“, d23 = H)_()35/ —)—()zélH and d31 = H)_()Sb’ —)_()15/”.
Having that, we can find the pose 65/ = [cq, 2, C3]T of the camera center
Cin (O,9’) by solving the absolute pose problem from Chapter[6.3] We
will select a solution with c3 < 0 and, if necessary, use a fourth point in
7t to choose the right solution among them. To find K, we can form the
following equation

o OO

0
0| =1 [KR\ . KR@] (10.29)
1|/

1

since point o is represented by [0,0,1]" in g and by [0,0,0]" in 6. Coordi-
nate system (O, 0) is chosen such that R = I and Cs = Hl;lﬂ Cs/ and thus
we get

Ol Bl =
K1[0 :—Tcé, (10.30)
1
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Now, let us consider matrix K as in Equation[10.16land use the intepretation
of elements of K from Chapter|[6] Equations We can write

L

S

f
- 0 k [ ] _ bl
[ 13 . |70 ke 031
K=1] o0 Sk anthus K = L LV .
DU 0 F Tk
0 0 1 0 0 1
and use it in Equation[10.30|to get
ki3 )
kfza =l (10.32)
— e
and thus
—C3 0 C1
K= 0 —c3 (10.33)
0 0 1

10.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space
an its corresponding vanishing point in an image. Let us consider a pair
of parallel lines K, L in space as shown in Figure[10.1[a). There is an affine
plane o containing the lines. The lines K, L are projected to image plane n
into lines k, [, respectively.

Now, first extend affine plane o to a projective plane X using the camera
center C. Then, define a coordinate system (C, o) with orthonormal basis
0= (d_i, d_;, d_;) such that vectors d_i, d_; span affine plane o.

Let 125, Eg be homogeneous coordinates of lines K, L w.r.t. 5. Then

@y = K5 x Lg (10.34)
11
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are homogeneous coordinates of the intersection of lines K, L in X.
Next, extend the affine plane 7 to a projective plane I'T using the camera
center C with the (camera) coordinate system (C, j3).

Let Eﬁ-, l;— be homogeneous coordinates of lines k, [ w.r.t. . Then
T = kg x I (10.35)

are homogeneous coordinates of the intersection of lines k, [ in IT.
Now, consider Equation|7.14lfor planes X and I'l. Since 6 is orthonormal,
we have K’ = I and thus that there is a homoghraphy

H=KR (10.36)

which maps plane X to plane Il. Matrices K and R of the camera are here
w.r.t. the world coordinate system (C, 6).
We see that there is a real A such that there holds

AU = KR (10.37)

true.

§1 Pairs of “orthogonal” vanishing points and camera with square
pixels Let us have two pairs of parallel lines in space, Figure [10.1[b),
such that they are also orthogonal, i.e. let K; be parallel with L; and K; be
parallel with L, and at the same time let K; be orthogonal to K; and L;
be orthogonal to L,. This, for instance, happens when lines Kj, L1, Ky, Lo
form a rectangle but they also may be arranged in the three-dimensional
space as non-intersecting.

Let lines kq, 11, k>, I be the pro]ectlons of Kl, L1, Kz, Ly, respectively, rep-

resented by the corresponding vectors klﬁ, llﬁ,k2ﬁ, lz in the camera coor-
dinates system with (in general non-orthogonal) ba51s B. Lines ky and [y,

12

— —
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resp. kp and I, generate vanishing points

The perpendicularity of 71 to w, is, in the camera orthogonal basis 6,

modeled by
@ oy = 0 (10.38) reckresf
We therefore get from Equation|10.37] //
zﬁﬁ K 'R'TRTK oy = 0 (10.39)
vlﬁ K 'K o = 0 (10.40)
Howty = 0 (10.41) \9&
which is a linear homogeneous equation in w. Assuming further square 2V
pixels, we get,[§2] .
=T - _ % W"s —
Uq /3 @ Z)zﬁ =0 —_—
Z)l B Q Uzﬁ = 0

1 0 o] [om] L
[011 12 013] 0 1 o3 o /@/

013 023 033 | | U23] Vi
/3/_ O :
d

013
)
[023 U11 + 021013 023012 + 022013 023 Uﬁ 023 = —(v21011 + v22012) L ] 7>

Oz

\(

kiz = —o13
ks = —op3

_ 12 2
kn = 033 — ki; — k3,

13
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10.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which

all lie in a plane ¢ and are measured in a coordinate system (O, d;,d})
in o, Figure [Z2] The points X are projected by a perspective camera

with the camera coordinate system is (C, ), = (l_;l, l_;z, 53) and projection
. . . . T . .
matrix P into image coordinates [ u v ] ,wr.t.animage coordinate system

(o, 51, 172), Equation[Z.16] See paragraph@to recall that the columns of P
can be writen as

p— [KR| —KR@,] - [&ﬂv div #V] (10.42)

and therefore we get the columns

of the homography H mapping o to 7 as defined in Equation|(7.17

Now imagine that we are observing a square with 4 corner points Xj,
X7, X3 and X4 in the plane 0 and we construct the coordinate system in ¢
by assigning coordi

(10.46)
(10.47)
(10.48)
(10.49)

(10.50)
Al dys —dlydos = (10.51)
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which lead to /L 2

d kTR, = 0 (10.52)

djrﬁ K TR dyg—d) K TRk dy, 0 (10.53)
by using dj,, = KRdjé fori=1,2,andR'R = I. ~
These are two linear equations on w and hefice also, see|§ 1} on ()
- — Q_
d e, = 0 (10.54) | VA
dl ody, —d] @dy, = 0 (10.55) >

on w in terms of estimated A H

h/oh, = 0& (10.56)

7)%9\WLK@«>Q~Q

One square provides two equations and therefore three squares in two
B }"1 A 7 &4 ]

h/ @h; —h) Qh,

planes in a general position suffice to calibrate full K. Actually, such three
squares provide one more equations than necessary since £ has only five
parameters. Hence, it is enough observe two squares and one rectangle
to get five constraints. Similarly, one square and one rectangle in a plane
then suffice to calibrate K when pixels are square.

Notice also that we have never used the special choice of coordinates of
Xs. Indeed, point X4 could be anywhere provided that we know how to
assign it coordinates in (O, dq, dé)

To calibrate the camera, we first assign coordinates to the corners of the
square as above, then find the homography H from the plane to the image

A% =HX;p (10.58)

fora; = 1,...,4 and finally use columns of H the find Q.
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