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Figure 6.4: A calibrated camera pose can be computed from projections of
three known points.

6.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from
projections of known six points. In fact, we have recovered the calibration
of the camera. Next we shall show that when the calibration is known,
we are able to find the pose of the camera from projections of three points.
This is a very classical problem which has been known since [14].

Figure[6.4]shows a camera with center C, which projects three points X,
Xp and X3, represented by vectors }215, }225 and )_()35 in (O, 0), into image
points represented by X1, X2 and 3.
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§1 Classical formulation of the calibrated camera pose computation 7
We introduce distances between pairs of points as

dip = ||X)26 - X)léH; dy = ||235 - i25||, dz1 = ||>216 - Xs&” (6.57)

Since we see three different points, we know that all distances are positive.
Points Xj, X, and X3 are in (C, y) represented by vectors

with 7; representing the distance from C to X;. Distances n; are positive
since otherwise we could not see the points.

X1
§2 Computing distances to the camera center Calibrated perspec- Tt
tive camera measures angles between projection rays
K™K
cij = cos £ (X, %)) = - —, i=1,2,3,j=(i—1nod 3 +1
! U R R
(6.59)
Hence we have all quantities 7;, cos Z (%, J?j) and d;;, which we need
to construct a set of equations using the rule of cosines df]. = 771.2 + 7]? -
27]117] COSL(E)Z'IJ?]')/ Le. - ((J\A/Or\w i d1t &Zg o(
- ' ) ] 531
T+m—2mmen | Sole. (6.60) o o
d3y = Al -2mmen | A= (661) o S
= 1]% + 17% -2 13 11 C31 > Ca’\\g (6.62)

with ¢;; = cos £ (¥, ¥}). d’% Z Unkaronms ﬂZa | %L] ?5

We have three quadratic equations in three variables. We shall solve
this system by manipulating the three equations to generate one equation
in one variable, solving i ituti ini Co ke

, g it and then substituting back to get the remaining

two variables. = (o 4 (e ewd\ g

 —
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§3 A classical solution Let us first get two equations in two variables.
Let us generate new equations by multiplying the left hand side of (6.60)
and - by the right hand side of (6.61) and right hand side of and

2) by the left hand side of (6.61] -
d%s (n} + 772 2@&2

d7, ( 772 + 773 2@C23
d5, (5 + 13 — 21213 €23) ds, (5 + 17 — 27M3 1 C31)

(6.64)

We could have made three different choices which equation to use twice
but since all d;; # 0, and hence all sides of the equations are nonzero, all
the choices are equally valid.

We have now two equations with three variables but since the equations
are homogeneous, we will be able to reduce the number of variables to
two by dividing equations by (e.g.) 17 (which is non-zero) to get

d%z (nf, + 7713 2mamscas) = da (1+1%, —2n1c2)  (6.65)
(7712 + 7713 2 12 113 C23) = d%?; (1 + Tﬁ?’ -2 ms3 C31) (666)
with n12 = '7_ and 113 = ZT Notice that we have a simpler situation than

before-wittronty twoquadratic equations in two variables. Let us proceed
further towards one equation in one variable.

We rearrange the terms to get a polynomials in 713 on the left and the
rest on the right

diy s + (~2dpmacs) ms = dys (1415, — 22 n2) — diyniy
(d§1 - d%?,) 71%3 +(2 d%g €31 — 2 dél M2c23) M3 = d§3 - d§1 Tﬁz (6.67)
to get two quadratic equations
min, +pims = g (6.68)
my 17%3 tp2ms = 42

4

2
(6.63) =—— { 4,

L4
31

7t

3:1,%&\'0\«5 e 3%[4'\.«9’\&"*5

= fﬁ+n§—2mnmz
d, = A5 —2mnscs
M+ 17— 21m3 11031
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in 113 with
my
p1
1
my
p2
q2

2

d,

—2d2, macs

das (1417, — 2mac12) — i1,
2 2

3 —dy,

2 d%?’ C3] — 2 d%l M2 €23

2 )
dyy — d3 M,

(6.69)
(6.70)
(6.71)
(6.72)
(6.73)
(6.74)

my 77%3 +pims = M1
mp 77%3 +p2ms q2

We have “hidden” the variable 11 in the new coefficients. We can now
look upon Equations[6.68 as on a linear system

[ml m} [17%3} _ [41] (6.75)
my p2 || Mms q2

The matrix of the system either is or is not singular.

§4 Case A If it is not singular, we can solve the system by Cramer’s

rule [3}14} 2] x 0
2 mp p1 qa p1
6.76
m?’/Hmz Pz} qu PZ] (6.76)
Hm m i ql]
= 6.77
m?‘[’"z Pz} \ I[mz 12 ©77
giving l‘/
) N ()
( ) My (mpy—map) = qip2—@p (6.78)
M (mypa —map1)” = (m1ga—moqn)” (6.79)
\; .

Eliminating 13 (by squaring equatio ying the first one

yields S —

(m1pa — map1) (q1p2 — g2 p1) = (m1g2 — maq1)? (6.80)

Gchw (c CoSe,

1
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Substituting Formulas|6.6916.74|into Equation[6.80|yields

0 = m 1]‘112 + a3 17“1’2 + a; 17%2 +aim+a = 681
with coefficients (Joﬁb/'«/o ok ‘U’S b
8 4 4 4 4 2 4 P 6 1 2 6
ag = —dy — dlz Ay — dyyday — 247, dy dyy + 243 dyy + 247, dyy (6.82)
+4di, 5y dys d5)
a3 = 4 dlZ d23 C31C23 — 4 d%z dg3 C12 — 4 d%z C23 dg?) 31 + 4 d%s C12 dél (683)

+4 d§3 c1p— 4 d%Z d%a (31 d%l 33— 8 d%2 Cy3 d§3 dzl c1p — 8 dg?; C12 d%l
+4 d%z d§3 C12 dgl
6 2 32 6 32 4 44 4 44 4 44 2
ay = 8dyci,dy +4d; d31 —2dydyy +2dy, dyy — 4dy, dyy 05y (6.84)
—4 ds C%Z 4 d4 C23 d§3 2 d§3 +8 d%z (23 dg3 C31C12
2 4 32 4 4 2 46
+4d7, c23 dyyd3y —4dy, c12 dsyy +4di, d, c31 +8 dl2 d23 31 d31 €23 C12
a = 4 d§3 C12 dél +4 d%z ng cp+4 d23 c1p — 4 dlz 23 d23 C31 (6.85)
—8d, d3, 5, c12 — 4dY, dyy c1 5, c23 — 4dT, dyy cra 3,
+4 dzllz d%?, C31C3 — 8 dg:,) C12 dél
6 42 2 14 32 4 14
a = 2 d23 d31 +2 dlz dza d31 - d23 d31
8 2 46
7d23 -2 d12 d23

—di,dy, +4d3,d5; 3, (6.86)

We will use eigenvalue computation to find a numerical solution to
Equation|[6.81] Construct the following companion matrix

HEET

co [P OO0 | (6.87)
010 -2| —q, :
001 -] —a,

and observe that

(m1pa —map1) (q1p2 — Gapr) = (m1 g2 — maqy)?

my = d%z T

p1 = —2di,npcxs

qm = dy (1405, —2maci2) —diyni,
my = d%l —dj,

pr = 2d5;c31 —2d3 nocos

92 = d%a - d§1 ’ﬁz

Doty (7)) =0 (dy4)
R T &€ C

(h L. mowe

4 as 3 a o a ap
[nM2I-C| = ’712+Z7712+a’712+a7712+a_4‘ﬁ~88)
’_v_’__ﬁ‘
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Therefore, a numerical approximation of 71, can be obtained by com-
puting, e.g., >>eig(C) in Matlab. Complex solutions are artifacts of the
method and should not be further considered. For every real solution, we
can then substitute back to Equation[6.79]to obtain the corresponding

miqy —m
ms = M2 = "2 g1 (6.89)
—~ mippz2 —myp1

d%z (d§3 - d%l ’ﬁz) + (‘%3 - dél) (d%3 1+ ’7%2 —2m2c12) — d%2 ’7%2)

2 d%z (d%3 €31 — dgl C23 7712) +2 (dgl — d§3) d%z C23 M12

To get 11, 12 and 13, we consider Equation[6.60] which can be rearranged
as
4, =} (1+ 13, — 2maci) (6.90)

and hence yields positive

d
m = 2 (6.91)
_— \/1+17%2—21]12C12
. = MmN (6.92)
3 = MmMm3 (6.93)

§5 Case B Let us now look at what happens when the matrix of the
system (6.75) is singular. Then, after substituting m;, m, p1 and p, from
Equations we have

mypy—mapr = 0 (6.94)
2 d%z d§3 (Mm2cs —cz1) = 0 (6.95)
Mma2c3 = (31 (6.96)

We used the fact that neither d1» # 0 nor d3 # 0.

\]
ma(mipa —map1) = miga—myqy (6.79)

eSD 22D
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§6 Case B1 When cy3 # 0, then we get

M2 = o (6.97)
€23

Substituting it to Equations we get

&2, (1 +(Ep—22 c12>6 98)

€312 C31
d? (( )+ =13 Cz3>
12 ’713 C23 Ui P

€23
diy (B + iy — 2031 Gy ia) = ey (35 + 63 — 2631 €23 ¢126.99)
and after some more manipulation obtain a quadratic equation
(% €33) M5+ (=2, G C31) Ma-+dyy 3~y oy —d 3y +2d33 c1a 023 C(Sl 1_ (;
6.100
in 113. We get 1, 2 and 713 from Equations

§7 Case B2 When ¢y = 0, then it follows from Equation [6.96] that
c31 = 0 as well. Returning back to equations provides

&y (1, + 1) = d3y (L+m, —2nncn) (6.101)
By (M + 1) = dig (14 135) (6.102)

Expressing 113 from Equation|6.102|gives

(d55 — d3,) 135 = d3, 1, — d3 (6.103)
§8 Case B2.1 When d2 dél, then we can write
d2 n — 2
2 312 ~ Y3
Ms= "% 5 (6.104)
6%3 B dfzn
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to substitute it into Equation|6.101

2 2 2
P2 ( , A3y, —dy,
12

et = ) = oy (1+ 15, —2m2ci2)  (6.105)
23 31

which we further manipulate to get a quadratic equation in 112
(dly — dys + d3y) 1y + 2012 (dyy — dyg) M + 3y — iy —dyy =0 (6.106)
We get 11, 12 and 113 from Equations

§9 Case B2.2 Finally, when d3, = d3,, then we get from Equation[6.103

ma2=1 (6.107)
and from Equation|6.101
d2
My = 22(2-2cp) -1 (6.108)
d
12
and hence the positive
a5
ms = 7 (2—2cpp) -1 (6.109)
12

We get 11, 112 and 13 from Equations

§10 Selecting solutions The above process of 1; computation often
delivers several solutions. It is important to notice that some of them
may not satisfy the original Equations[6.62H6.60] For instance, we always
obtain solutions for the case A as well as for some of the cases B but
only one of the cases is actually valid. Hence, we need to select only the
solutions that satisfy Equations [6.6216.60]and are meaningful, i.e. are real
and positive.
9
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§11 A modern (more elegant) solution The classical solution is per-

fectly valid but it was quite tedious to derive it. Let us now present

another, somewhat more elegant, solution, which exploits some of more ? 2,

recent results of algebraic geometry [15}|16]. 'y 7 ¢ ">
Let us consider Equations[6.60][6.61][6.62land proceed to Equations[6.65][6.66]

but, this time, using all three pairs to get three equations in 112, 113

fio= d, (1, + 05— 2mams c2s) — dyy (1 + 113, — 2mi2 c12) 460110) Loy i X anSuions
f = d%l (’7%2 + ’7%3 —2n12M13¢23) — d%s (1+ ’7%3 —2mizcar) @111)
f3 = d%z (1 + Tﬁf} — 21’[13 C31) — d%l (1 + 17%2 — 21]12 Clz) =0 (6112) ?/L / %,/ K]

It is known [15}/16] that solutions to a set of k algebraic equations

Flxn ) =0, i=1...k (6.113) k=2 L‘}buoj;b'ws (Wa
n n variables, which have a fininte number of solutions, can always be m 2 M [Ool’(rv‘m al >

btained by deriving a polynomial g(x,) = 0 in the last variable by the

ollowing procedure. If the system, does not have any solution, the pro- % (( Mg - X,\_\) ) % O( " )

edure will generate polynomial g, = 1, i.e. a non-zero constant, leading , ( @

o the contradiction 1 = 0. Q&WCMO$% WM
The procedure is as follows. First generate new equations by multiply-

ng all f; by all possible monomials up to degree m

X1yeee) X X0, X1 X0, Xy X0, X0 X0, X (6.114) — )
to get equations Moo waal V\A‘u,&}’» P s o ’S" 1
f1 = 0/---/fn = 0, X1f1 = 0,...,xnfn = 0, x%ﬁ = 0, X1XQf1 = 0,...,xffn =0 &”_’—’__/_)
L/\f\_/\-’-\/“/trk\“’\’ e (6.115)
The degree m needs to be chosen such that the next step yields the desired X X X ¢ ca X L
result. It is always possible to choose such m but it may sometimes be ' ( " Ty =
found only by using more and more monomials until the Gaussian elim- X0 Xo "X Ya
ination of the matrix of coefficients, which combine monomials, does not 17%¢ \ -

10
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produce a row corresponding to an equationin x, only. Let us demonstrate

this process by solving our problem. > o
We use the following four monomials of maximal degree two /
2
M2, N3, M2 M3, M7, (6.116) A
Notice that we did not include the second degree monomial 7%, since it s
turns out that equations generated by that monomial are not necessary.
We obtain 15 = 3 + 4 x 3 equations
B . 1 T . 3 — I -
(I 1 R 1
- f 3
f "3
3 7,
M2 fi i
m2 f2 e
m2 f3 30
zqui‘mg ms f a3
mafo | =m|MM2| —Mm=0 (6.117)
13 7[12
ms f3 1 ;177
M2 1M13 f1 3
M2 M3 f2
12113 J3
M2 f L
7732 f 1
77%2 f 2
\/ LMo fs - N
with
[ 0 0 0 0 m 0 0 —my 0 0 0 my mg  —my
0 0 0 0 ms 0 0 mg  —myg 0 0 —m3 0 ny
0 0 0 0 —my 0 0 0 myq 0 0 mz  —mip mg
0 0 0 my 0 0 —my 0 0 0 my mg —my 0
0 0 0 0 0 — 0 0 — 0 0
T T T T T R 15 5 14 Macauwbey
M 0 my 0 —my 0 0 my mg —my 0 0 0 0 0 .
= 0 m 0 m —m 0 —m 0 m 0 0 0 0 0 'l'\r\
0 —mi 0 ?) mi(lJ 0 mg —myy mé 0 0 0 0 0 v x
— my 0 —my 0 0 my mg —y 0 0 0 0 0 0
ms 0 mg  —myg 0 —m3 0 ny 0 0 0 0 0 0
—ny 0 0 myq 0 ms —myp Mg 0 0 0 0 0 0
0 0 ny 0 0  —my 0 0 0 my mg —my 0 0
0 0 ms 0 0 My —myg 0 0 —ms 0 my 0 0
0 0 —m 0 0 0 myy 0 0 ms —myp e 0 0 |
(6.118)

|
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and M m = O
m = diz my = diz — d%3 my = 2 di2 C23 nmypy = 2 d§3 C31
— _ 2 _ _ 2
my; = d%3 ms = d%a — dgl mg = Zd%3 C12 miyp = 2 d%z C31 (6/§ l({ - O
ms = d31 me = d31 — dlz mg = 2 dSl C23 miy = 2 d31 C12
(6.119)

Matrix M contains coefficients and vector m contains the monomials.
Notice in Equation that the last five monomials contain only on

2. We have deliberately ordered monomials to achieve this. Next, we v

do Gaussian elimination (with pivoting) of matrix M and get a new matrix

M. qum(
One can verify that that the 10th row of M’ has the first nine elements

equal to zero. Therefore

Gyms s ame (&xcwvﬂaj'\dw

\!
&

n

Mio.m=0 (6.120)

is a polynomial only in n12. In fact, it is exactly a non-zero multiple of
polynomials obtained in cases A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with piv-
oting, which avoids dividing by elements close to zero. The resulting
polynomial may be of degree four (case A) but will have lower degrees in
other cases.

§12 Computing camera orientation and camera center Having quan-

tities 11, 112, 13, we shall compute camera projection center 65 and camera
rotation R from Equation[6.24]
The three points X1, X, and X3 are represented in the world coordinate

1

- - - v
system (O, 0) by vectors X15, X25 and X3zs. With known 11, 12, 13, we can

: : 0 = anj,+a3m, +a215, +ain +a
represent them also in the camera (orthonormal) coordinate system (C, €) 42 T 03 Tha F @21 1 TRz 7 A0
by vectors —

v - JaE fy?ly J?ZV 4
Vi = iifie = —— = ==L =, =L, i=1,2,3 (6.121)
i€ lyle nl HxieH 1 foin 171 Hxl’)/H

12
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Coordinate vectors )Zié are related to coordinate vectors 171'6 as follows

S 5 5 [ "L R > X X
Yie = R(X15—GCy) EQAUM(\AQ (6.122) Yie=77i]7ie=77i||3ile|| =77i|;j/|| =ﬂi||Jy||/ i=1,2,3
> = = X; X X;
Yoe = R(Xp5—Co) & (6123 - v 7
Yae = R(Xa—Cy) (6.124)
There are three vector equations in R3, which is nine scalar equations, and i X
. 3 2

12 unknowns in R and Cs. Additional seve are provided by

UM—L\WVVV\— K . {26 - {16 = R (}526 - )516) (6125)
Y3 —Y = R(X35 — X ~ 6.126 7
QC”}/\A‘Q ‘ 3¢ 1le ( 35 16) S A ( ) {3 X1

(151

and use the property (Equation[1.50/in Section[1.3) ( R ) = K
+
e
of the vector product of any two vectors X, Y in R3 and an orthonormal
matrix R to write

(o

- - Ri—r - - - -
Xe x Ye = ﬁ(x(s x Ys) =R(Xs x Y5) (6.127)

(Yoo — Yie) x (Yae — Yio) = (R (Xo5 — im)) X (R (X5 — 5215@»128)

= R (Ko — Xio) x (X3 — X13)) (6.129)

which provides a triplet of independent vectors expressed in the two bases (,v 2 fam e‘b

Zoe = Yae — Yie, Zoy = Xop — Xas (6.130) .
Zae = Yae — Yie, Zay = X35 — Xup (6.131) See tue '\E‘DU'OW’WJ/
Zie = Zoe % Zae, Z1s = Zas x Zas (6.132)

Twrae  podes

13
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Rotation R can then be recovered from oy 3
)
Z1e 22/%3)] ,@ Zis Zos @] (6.133)
as Verd _1>
R= [zle Zoe Zse] [215 Zas 235] (6.134)

With known R we get Cs as

l Cs = Xis —R" Yy, i=123 J (6.135)

14
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§1 Vector product Assume two linearly independent coordinate vec-
tors

X=[x1 x X3]T andy=[y1 2 yg]T in R®. The following system of
linear equations varh L

X1 X2 X3 | 5 —5 AD s D,{—ge@
Lx % {m yz yS]z 0 (1.41)

has a one-dimensional subspace V of solutions in R®. The solutions can
be written as multiples of one non-zero vector @, the basis of V, i.e.

Let us see how we can construct @ in a convenient way from vectors X, j/.
Consider determinants of two matrices constructed from the matrix of
the system (L.41) by adjoining its first, resp. second, row to the matrix of

the system
X1 X2 X3 X1 X2 X3
|: vyi y2 y3|[=0 i v2 y3||=0 (1.43)
X x X3 || T I: iy oy
which gives x5 By 3

0(1.44)
0(1.45)

Dxy (X2y3 —x3Y2) +x2 (X3Y1 —x1Y3) + X3 (X1 Y2 — X2 Y1)
vi(oys —x3y2) + Y2 (x3y1 —x1y3) + y3 (X1 2 — X2 y1)

I

and can be rewritten as

X2 Y3 —X3Y2
[xl X2 xﬂ —x1ys+x311 | =0 (1.46)
AN AL X1Y2 — X2 Y1
We see that vector
X2 Y3 — X3 Y2
W= | —x1y3+x311 (1.47)
X1Y2—X2 1

15

G‘CV‘CV%Q' :]QN mu&\/

-T

— - R — -

R™T]

R (Xs x Ys)

X

l'Kr3x lTe — R

3
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solves Equation|1.41

Notice that elements of @ are the three two by two minors of the matrix
of the system (1.41). The rank of the matrix is two, which means that at
least one of the minors is non-zero, and hence @ is also non-zero. We see
that @ is a basic vector of V. Formula[1.47is known as the vector product
in R3 and @ is also often denoted by ¥ x ¥/.

§2 Vector product under the change of basis Let us next study the
behavior of the vector product under the change of basis in R3. Let
us have two bases §, B/ in R® and two vectors ¥, i with coordinates

G=[n w2 w],gi=l(n oyl adi =[x g g] =

lvi v, vi] . Weintroduce

o X2 Y3 — X312 L X33 = X3,
Xg X yg=|-—X1y3+x311 Xgr % Ygr = | —x1y5 + X3y (1.48)
X1Y2 — X241 XY, — X,

To find the relationship between xg x /3 and X/ x /g, we will use the follow-
. > T 5 T
ing fact. For every three vectors ¥ = [x1 x2 x3] , 7= [v1 12 y3],
Z=[z1 =z 23]T in R? there holds

X2 Y3 — X312 X1 X2 3 T
ZTXx)=[z1 = z| |-xp+wyn | =l 2 y||=||7 [149
X1y2 — X211 21 7 7 Zr

A OXUMIW\(' {"”\C"L ,»/—’f\_\j

x

16
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We can write us
— N - = [ 2T I d T —_
oo [ RO v i i i —— X
Xﬁ/ Xyﬁ’ = [010] (ﬁﬁlx%ﬁ/) = yﬁ/ yﬁ/ yﬁ/ ﬁ
[001] (xpr x Fp') 100 |[o10 001 =
NEY a4 )] e
— 7iAT 7iAT 73AT e S
[ 100 010 | 001 ||
[ ) %] !
'\7_ | | g)‘l;r AT y_)T AT g)‘[;r AT
ﬁ& < | [100] AT [010] AT [001] A~ T
RILOOJA™ (3 x ¥) |
= [[010] A—T(giﬁ x ) | [a"]
[001]}\7 (ﬁxylg)
ACT R oo
A (AL (R 36) (1.50)

§3 Vector product as a linear mapping It is interesting to see that for
all ¥, i/ € R® there holds

X2Y3—X3Y2 | 0 —x3 x| [wn
Exi=|-xy+xap|=| 3 0 —x||p (1.51)
X1 Y2 — X2 Y1 | X2 X 0] [ys

and thus we can introduce matrix

0 —X3 X2
[Kl,=] % 0 —x (1.52)
| —x2 X1 0
and write
Fx =77 (1.53)






